Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemclccjdd Structured version   Unicode version

Theorem dalemclccjdd 32686
Description: Lemma for dath 32734. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypothesis
Ref Expression
da.ps0  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
Assertion
Ref Expression
dalemclccjdd  |-  ( ps 
->  C  .<_  ( c 
.\/  d ) )

Proof of Theorem dalemclccjdd
StepHypRef Expression
1 da.ps0 . 2  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
2 simp33 1035 . 2  |-  ( ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) )  ->  C  .<_  ( c  .\/  d ) )
31, 2sylbi 195 1  |-  ( ps 
->  C  .<_  ( c 
.\/  d ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    e. wcel 1842    =/= wne 2598   class class class wbr 4394  (class class class)co 6234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976
This theorem is referenced by:  dalemswapyzps  32688  dalemrotps  32689  dalem21  32692  dalem25  32696
  Copyright terms: Public domain W3C validator