Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemcea Structured version   Unicode version

Theorem dalemcea 32874
Description: Lemma for dath 32950. Frequently-used utility lemma. Here we show that  C must be an atom. This is an assumption in most presentations of Desargue's theorem; instead, we assume only the  C is a lattice element, in order to make later substitutions for  C easier. (Contributed by NM, 23-Sep-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem1.o  |-  O  =  ( LPlanes `  K )
dalem1.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
Assertion
Ref Expression
dalemcea  |-  ( ph  ->  C  e.  A )

Proof of Theorem dalemcea
StepHypRef Expression
1 dalema.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkeop 32839 . . 3  |-  ( ph  ->  K  e.  OP )
3 dalemc.a . . . 4  |-  A  =  ( Atoms `  K )
41, 3dalemceb 32852 . . 3  |-  ( ph  ->  C  e.  ( Base `  K ) )
51dalemkehl 32837 . . . 4  |-  ( ph  ->  K  e.  HL )
6 dalemc.l . . . . 5  |-  .<_  =  ( le `  K )
7 dalemc.j . . . . 5  |-  .\/  =  ( join `  K )
8 dalem1.o . . . . 5  |-  O  =  ( LPlanes `  K )
9 dalem1.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
101, 6, 7, 3, 8, 9dalempjsen 32867 . . . 4  |-  ( ph  ->  ( P  .\/  S
)  e.  ( LLines `  K ) )
111dalemqea 32841 . . . . 5  |-  ( ph  ->  Q  e.  A )
121dalemtea 32844 . . . . 5  |-  ( ph  ->  T  e.  A )
131, 6, 7, 3, 8, 9dalemqnet 32866 . . . . 5  |-  ( ph  ->  Q  =/=  T )
14 eqid 2433 . . . . . 6  |-  ( LLines `  K )  =  (
LLines `  K )
157, 3, 14llni2 32726 . . . . 5  |-  ( ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  /\  Q  =/=  T
)  ->  ( Q  .\/  T )  e.  (
LLines `  K ) )
165, 11, 12, 13, 15syl31anc 1214 . . . 4  |-  ( ph  ->  ( Q  .\/  T
)  e.  ( LLines `  K ) )
171, 6, 7, 3, 8, 9dalem1 32873 . . . 4  |-  ( ph  ->  ( P  .\/  S
)  =/=  ( Q 
.\/  T ) )
181dalem-clpjq 32851 . . . . . . . 8  |-  ( ph  ->  -.  C  .<_  ( P 
.\/  Q ) )
191, 7, 3dalempjqeb 32859 . . . . . . . . . . 11  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
20 eqid 2433 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
21 eqid 2433 . . . . . . . . . . . 12  |-  ( 0.
`  K )  =  ( 0. `  K
)
2220, 6, 21op0le 32401 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( 0. `  K )  .<_  ( P  .\/  Q ) )
232, 19, 22syl2anc 654 . . . . . . . . . 10  |-  ( ph  ->  ( 0. `  K
)  .<_  ( P  .\/  Q ) )
24 breq1 4283 . . . . . . . . . 10  |-  ( C  =  ( 0. `  K )  ->  ( C  .<_  ( P  .\/  Q )  <->  ( 0. `  K )  .<_  ( P 
.\/  Q ) ) )
2523, 24syl5ibrcom 222 . . . . . . . . 9  |-  ( ph  ->  ( C  =  ( 0. `  K )  ->  C  .<_  ( P 
.\/  Q ) ) )
2625necon3bd 2635 . . . . . . . 8  |-  ( ph  ->  ( -.  C  .<_  ( P  .\/  Q )  ->  C  =/=  ( 0. `  K ) ) )
2718, 26mpd 15 . . . . . . 7  |-  ( ph  ->  C  =/=  ( 0.
`  K ) )
28 eqid 2433 . . . . . . . . 9  |-  ( lt
`  K )  =  ( lt `  K
)
2920, 28, 21opltn0 32405 . . . . . . . 8  |-  ( ( K  e.  OP  /\  C  e.  ( Base `  K ) )  -> 
( ( 0. `  K ) ( lt
`  K ) C  <-> 
C  =/=  ( 0.
`  K ) ) )
302, 4, 29syl2anc 654 . . . . . . 7  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) C  <-> 
C  =/=  ( 0.
`  K ) ) )
3127, 30mpbird 232 . . . . . 6  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) C )
321dalemclpjs 32848 . . . . . . 7  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
331dalemclqjt 32849 . . . . . . 7  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
341dalemkelat 32838 . . . . . . . 8  |-  ( ph  ->  K  e.  Lat )
351dalempea 32840 . . . . . . . . 9  |-  ( ph  ->  P  e.  A )
361dalemsea 32843 . . . . . . . . 9  |-  ( ph  ->  S  e.  A )
3720, 7, 3hlatjcl 32581 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
385, 35, 36, 37syl3anc 1211 . . . . . . . 8  |-  ( ph  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
3920, 7, 3hlatjcl 32581 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  ->  ( Q  .\/  T
)  e.  ( Base `  K ) )
405, 11, 12, 39syl3anc 1211 . . . . . . . 8  |-  ( ph  ->  ( Q  .\/  T
)  e.  ( Base `  K ) )
41 eqid 2433 . . . . . . . . 9  |-  ( meet `  K )  =  (
meet `  K )
4220, 6, 41latlem12 15230 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  ( Q  .\/  T )  e.  (
Base `  K )
) )  ->  (
( C  .<_  ( P 
.\/  S )  /\  C  .<_  ( Q  .\/  T ) )  <->  C  .<_  ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) ) ) )
4334, 4, 38, 40, 42syl13anc 1213 . . . . . . 7  |-  ( ph  ->  ( ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T ) )  <-> 
C  .<_  ( ( P 
.\/  S ) (
meet `  K )
( Q  .\/  T
) ) ) )
4432, 33, 43mpbi2and 905 . . . . . 6  |-  ( ph  ->  C  .<_  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) ) )
45 opposet 32396 . . . . . . . 8  |-  ( K  e.  OP  ->  K  e.  Poset )
462, 45syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  Poset )
4720, 21op0cl 32399 . . . . . . . 8  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  ( Base `  K
) )
482, 47syl 16 . . . . . . 7  |-  ( ph  ->  ( 0. `  K
)  e.  ( Base `  K ) )
4920, 41latmcl 15204 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  ( Q  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  (
Base `  K )
)
5034, 38, 40, 49syl3anc 1211 . . . . . . 7  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  (
Base `  K )
)
5120, 6, 28pltletr 15123 . . . . . . 7  |-  ( ( K  e.  Poset  /\  (
( 0. `  K
)  e.  ( Base `  K )  /\  C  e.  ( Base `  K
)  /\  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  (
Base `  K )
) )  ->  (
( ( 0. `  K ) ( lt
`  K ) C  /\  C  .<_  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) )  -> 
( 0. `  K
) ( lt `  K ) ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) ) )
5246, 48, 4, 50, 51syl13anc 1213 . . . . . 6  |-  ( ph  ->  ( ( ( 0.
`  K ) ( lt `  K ) C  /\  C  .<_  ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) ) )  -> 
( 0. `  K
) ( lt `  K ) ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) ) )
5331, 44, 52mp2and 672 . . . . 5  |-  ( ph  ->  ( 0. `  K
) ( lt `  K ) ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) )
5420, 28, 21opltn0 32405 . . . . . 6  |-  ( ( K  e.  OP  /\  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  (
Base `  K )
)  ->  ( ( 0. `  K ) ( lt `  K ) ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  <->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  =/=  ( 0. `  K ) ) )
552, 50, 54syl2anc 654 . . . . 5  |-  ( ph  ->  ( ( 0. `  K ) ( lt
`  K ) ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) )  <->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  =/=  ( 0. `  K ) ) )
5653, 55mpbid 210 . . . 4  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  =/=  ( 0. `  K ) )
5741, 21, 3, 142llnmat 32738 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  .\/  S
)  e.  ( LLines `  K )  /\  ( Q  .\/  T )  e.  ( LLines `  K )
)  /\  ( ( P  .\/  S )  =/=  ( Q  .\/  T
)  /\  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  =/=  ( 0. `  K ) ) )  ->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  A
)
585, 10, 16, 17, 56, 57syl32anc 1219 . . 3  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  A
)
5920, 6, 21, 3leat2 32509 . . 3  |-  ( ( ( K  e.  OP  /\  C  e.  ( Base `  K )  /\  (
( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) )  e.  A
)  /\  ( C  =/=  ( 0. `  K
)  /\  C  .<_  ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) ) ) )  ->  C  =  ( ( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) ) )
602, 4, 58, 27, 44, 59syl32anc 1219 . 2  |-  ( ph  ->  C  =  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) ) )
6160, 58eqeltrd 2507 1  |-  ( ph  ->  C  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   Basecbs 14156   lecple 14227   Posetcpo 15092   ltcplt 15093   joincjn 15096   meetcmee 15097   0.cp0 15189   Latclat 15197   OPcops 32387   Atomscatm 32478   HLchlt 32565   LLinesclln 32705   LPlanesclpl 32706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-poset 15098  df-plt 15110  df-lub 15126  df-glb 15127  df-join 15128  df-meet 15129  df-p0 15191  df-lat 15198  df-clat 15260  df-oposet 32391  df-ol 32393  df-oml 32394  df-covers 32481  df-ats 32482  df-atl 32513  df-cvlat 32537  df-hlat 32566  df-llines 32712  df-lplanes 32713
This theorem is referenced by:  dalem2  32875  dalem5  32881  dalem-cly  32885  dalem9  32886  dalem19  32896  dalem21  32908  dalem25  32912
  Copyright terms: Public domain W3C validator