Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemccnedd Structured version   Visualization version   Unicode version

Theorem dalemccnedd 33264
Description: Lemma for dath 33313. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypothesis
Ref Expression
da.ps0  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
Assertion
Ref Expression
dalemccnedd  |-  ( ps 
->  c  =/=  d
)

Proof of Theorem dalemccnedd
StepHypRef Expression
1 da.ps0 . . 3  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
2 simp31 1045 . . 3  |-  ( ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) )  -> 
d  =/=  c )
31, 2sylbi 199 . 2  |-  ( ps 
->  d  =/=  c
)
43necomd 2681 1  |-  ( ps 
->  c  =/=  d
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    e. wcel 1889    =/= wne 2624   class class class wbr 4405  (class class class)co 6295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-ext 2433
This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 988  df-cleq 2446  df-ne 2626
This theorem is referenced by:  dalemswapyzps  33267  dalemrotps  33268  dalemcjden  33269
  Copyright terms: Public domain W3C validator