Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem60 Structured version   Unicode version

Theorem dalem60 33658
Description: Lemma for dath 33662. 
B is an axis of perspectivity (almost). (Contributed by NM, 11-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem60.m  |-  ./\  =  ( meet `  K )
dalem60.o  |-  O  =  ( LPlanes `  K )
dalem60.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem60.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem60.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
dalem60.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
dalem60.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
dalem60.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
dalem60.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
dalem60.b1  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
Assertion
Ref Expression
dalem60  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( D  .\/  E
)  =  B )

Proof of Theorem dalem60
StepHypRef Expression
1 dalem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . . 4  |-  .<_  =  ( le `  K )
3 dalem.j . . . 4  |-  .\/  =  ( join `  K )
4 dalem.a . . . 4  |-  A  =  ( Atoms `  K )
5 dalem.ps . . . 4  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
6 dalem60.m . . . 4  |-  ./\  =  ( meet `  K )
7 dalem60.o . . . 4  |-  O  =  ( LPlanes `  K )
8 dalem60.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
9 dalem60.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
10 dalem60.d . . . 4  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
11 dalem60.g . . . 4  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
12 dalem60.h . . . 4  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
13 dalem60.i . . . 4  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
14 dalem60.b1 . . . 4  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14dalem57 33655 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  D  .<_  B )
16 dalem60.e . . . 4  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
171, 2, 3, 4, 5, 6, 7, 8, 9, 16, 11, 12, 13, 14dalem58 33656 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  E  .<_  B )
181dalemkelat 33550 . . . . 5  |-  ( ph  ->  K  e.  Lat )
19183ad2ant1 1009 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  Lat )
201, 2, 3, 4, 6, 7, 8, 9, 10dalemdea 33588 . . . . . 6  |-  ( ph  ->  D  e.  A )
21 eqid 2450 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
2221, 4atbase 33216 . . . . . 6  |-  ( D  e.  A  ->  D  e.  ( Base `  K
) )
2320, 22syl 16 . . . . 5  |-  ( ph  ->  D  e.  ( Base `  K ) )
24233ad2ant1 1009 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  D  e.  ( Base `  K ) )
251, 2, 3, 4, 6, 7, 8, 9, 16dalemeea 33589 . . . . . 6  |-  ( ph  ->  E  e.  A )
2621, 4atbase 33216 . . . . . 6  |-  ( E  e.  A  ->  E  e.  ( Base `  K
) )
2725, 26syl 16 . . . . 5  |-  ( ph  ->  E  e.  ( Base `  K ) )
28273ad2ant1 1009 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  E  e.  ( Base `  K ) )
29 eqid 2450 . . . . . 6  |-  ( LLines `  K )  =  (
LLines `  K )
301, 2, 3, 4, 5, 6, 29, 7, 8, 9, 11, 12, 13, 14dalem53 33651 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  e.  ( LLines `  K ) )
3121, 29llnbase 33435 . . . . 5  |-  ( B  e.  ( LLines `  K
)  ->  B  e.  ( Base `  K )
)
3230, 31syl 16 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  e.  ( Base `  K ) )
3321, 2, 3latjle12 15320 . . . 4  |-  ( ( K  e.  Lat  /\  ( D  e.  ( Base `  K )  /\  E  e.  ( Base `  K )  /\  B  e.  ( Base `  K
) ) )  -> 
( ( D  .<_  B  /\  E  .<_  B )  <-> 
( D  .\/  E
)  .<_  B ) )
3419, 24, 28, 32, 33syl13anc 1221 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( D  .<_  B  /\  E  .<_  B )  <-> 
( D  .\/  E
)  .<_  B ) )
3515, 17, 34mpbi2and 912 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( D  .\/  E
)  .<_  B )
361dalemkehl 33549 . . . 4  |-  ( ph  ->  K  e.  HL )
37363ad2ant1 1009 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
381, 2, 3, 4, 6, 7, 8, 9, 10, 16dalemdnee 33592 . . . . 5  |-  ( ph  ->  D  =/=  E )
393, 4, 29llni2 33438 . . . . 5  |-  ( ( ( K  e.  HL  /\  D  e.  A  /\  E  e.  A )  /\  D  =/=  E
)  ->  ( D  .\/  E )  e.  (
LLines `  K ) )
4036, 20, 25, 38, 39syl31anc 1222 . . . 4  |-  ( ph  ->  ( D  .\/  E
)  e.  ( LLines `  K ) )
41403ad2ant1 1009 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( D  .\/  E
)  e.  ( LLines `  K ) )
422, 29llncmp 33448 . . 3  |-  ( ( K  e.  HL  /\  ( D  .\/  E )  e.  ( LLines `  K
)  /\  B  e.  ( LLines `  K )
)  ->  ( ( D  .\/  E )  .<_  B 
<->  ( D  .\/  E
)  =  B ) )
4337, 41, 30, 42syl3anc 1219 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( D  .\/  E )  .<_  B  <->  ( D  .\/  E )  =  B ) )
4435, 43mpbid 210 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( D  .\/  E
)  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1757    =/= wne 2641   class class class wbr 4376   ` cfv 5502  (class class class)co 6176   Basecbs 14262   lecple 14333   joincjn 15202   meetcmee 15203   Latclat 15303   Atomscatm 33190   HLchlt 33277   LLinesclln 33417   LPlanesclpl 33418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-ral 2797  df-rex 2798  df-reu 2799  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4176  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-id 4720  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-riota 6137  df-ov 6179  df-oprab 6180  df-poset 15204  df-plt 15216  df-lub 15232  df-glb 15233  df-join 15234  df-meet 15235  df-p0 15297  df-lat 15304  df-clat 15366  df-oposet 33103  df-ol 33105  df-oml 33106  df-covers 33193  df-ats 33194  df-atl 33225  df-cvlat 33249  df-hlat 33278  df-llines 33424  df-lplanes 33425  df-lvols 33426
This theorem is referenced by:  dalem61  33659
  Copyright terms: Public domain W3C validator