Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem58 Structured version   Unicode version

Theorem dalem58 33393
Description: Lemma for dath 33399. Analog of dalem57 33392 for  E. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem58.m  |-  ./\  =  ( meet `  K )
dalem58.o  |-  O  =  ( LPlanes `  K )
dalem58.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem58.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem58.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
dalem58.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
dalem58.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
dalem58.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
dalem58.b1  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
Assertion
Ref Expression
dalem58  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  E  .<_  B )

Proof of Theorem dalem58
StepHypRef Expression
1 dalem.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . . . 5  |-  .<_  =  ( le `  K )
3 dalem.j . . . . 5  |-  .\/  =  ( join `  K )
4 dalem.a . . . . 5  |-  A  =  ( Atoms `  K )
5 dalem58.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
6 dalem58.z . . . . 5  |-  Z  =  ( ( S  .\/  T )  .\/  U )
71, 2, 3, 4, 5, 6dalemrot 33320 . . . 4  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
873ad2ant1 1009 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
91, 2, 3, 4, 5, 6dalemrotyz 33321 . . . 4  |-  ( (
ph  /\  Y  =  Z )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( T 
.\/  U )  .\/  S ) )
1093adant3 1008 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( Q  .\/  R )  .\/  P )  =  ( ( T 
.\/  U )  .\/  S ) )
11 dalem.ps . . . . 5  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
121, 2, 3, 4, 11, 5dalemrotps 33354 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
13123adant2 1007 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
14 biid 236 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  <->  ( (
( K  e.  HL  /\  C  e.  ( Base `  K ) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A ) )  /\  ( ( ( Q 
.\/  R )  .\/  P )  e.  O  /\  ( ( T  .\/  U )  .\/  S )  e.  O )  /\  ( ( -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
)  /\  -.  C  .<_  ( P  .\/  Q
) )  /\  ( -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S )  /\  -.  C  .<_  ( S 
.\/  T ) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U )  /\  C  .<_  ( P  .\/  S ) ) ) ) )
15 biid 236 . . . 4  |-  ( ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  ( ( Q  .\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q  .\/  R )  .\/  P )  /\  C  .<_  ( c 
.\/  d ) ) )  <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
16 dalem58.m . . . 4  |-  ./\  =  ( meet `  K )
17 dalem58.o . . . 4  |-  O  =  ( LPlanes `  K )
18 eqid 2443 . . . 4  |-  ( ( Q  .\/  R ) 
.\/  P )  =  ( ( Q  .\/  R )  .\/  P )
19 eqid 2443 . . . 4  |-  ( ( T  .\/  U ) 
.\/  S )  =  ( ( T  .\/  U )  .\/  S )
20 dalem58.e . . . 4  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
21 dalem58.h . . . 4  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
22 dalem58.i . . . 4  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
23 dalem58.g . . . 4  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
24 eqid 2443 . . . 4  |-  ( ( ( H  .\/  I
)  .\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) )  =  ( ( ( H  .\/  I
)  .\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) )
2514, 2, 3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24dalem57 33392 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  /\  (
( Q  .\/  R
)  .\/  P )  =  ( ( T 
.\/  U )  .\/  S )  /\  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q  .\/  R ) 
.\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q  .\/  R ) 
.\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )  ->  E  .<_  ( ( ( H  .\/  I )  .\/  G
)  ./\  ( ( Q  .\/  R )  .\/  P ) ) )
268, 10, 13, 25syl3anc 1218 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  E  .<_  ( ( ( H  .\/  I ) 
.\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) ) )
271dalemkehl 33286 . . . . . 6  |-  ( ph  ->  K  e.  HL )
28273ad2ant1 1009 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
291, 2, 3, 4, 11, 16, 17, 5, 6, 21dalem29 33364 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  e.  A )
301, 2, 3, 4, 11, 16, 17, 5, 6, 22dalem34 33369 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  A )
311, 2, 3, 4, 11, 16, 17, 5, 6, 23dalem23 33359 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
323, 4hlatjrot 33036 . . . . 5  |-  ( ( K  e.  HL  /\  ( H  e.  A  /\  I  e.  A  /\  G  e.  A
) )  ->  (
( H  .\/  I
)  .\/  G )  =  ( ( G 
.\/  H )  .\/  I ) )
3328, 29, 30, 31, 32syl13anc 1220 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( H  .\/  I )  .\/  G
)  =  ( ( G  .\/  H ) 
.\/  I ) )
341, 3, 4dalemqrprot 33311 . . . . . 6  |-  ( ph  ->  ( ( Q  .\/  R )  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
3534, 5syl6eqr 2493 . . . . 5  |-  ( ph  ->  ( ( Q  .\/  R )  .\/  P )  =  Y )
36353ad2ant1 1009 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( Q  .\/  R )  .\/  P )  =  Y )
3733, 36oveq12d 6124 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( H 
.\/  I )  .\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) )  =  ( ( ( G  .\/  H )  .\/  I ) 
./\  Y ) )
38 dalem58.b1 . . 3  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
3937, 38syl6eqr 2493 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( H 
.\/  I )  .\/  G )  ./\  ( ( Q  .\/  R )  .\/  P ) )  =  B )
4026, 39breqtrd 4331 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  E  .<_  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620   class class class wbr 4307   ` cfv 5433  (class class class)co 6106   Basecbs 14189   lecple 14260   joincjn 15129   meetcmee 15130   Atomscatm 32927   HLchlt 33014   LPlanesclpl 33155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2735  df-rex 2736  df-reu 2737  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-op 3899  df-uni 4107  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-id 4651  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-poset 15131  df-plt 15143  df-lub 15159  df-glb 15160  df-join 15161  df-meet 15162  df-p0 15224  df-lat 15231  df-clat 15293  df-oposet 32840  df-ol 32842  df-oml 32843  df-covers 32930  df-ats 32931  df-atl 32962  df-cvlat 32986  df-hlat 33015  df-llines 33161  df-lplanes 33162  df-lvols 33163
This theorem is referenced by:  dalem59  33394  dalem60  33395
  Copyright terms: Public domain W3C validator