Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem53 Structured version   Unicode version

Theorem dalem53 35550
Description: Lemma for dath 35561. The auxliary axis of perspectivity  B is a line (analogous to the actual axis of perspectivity  X in dalem15 35503. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem53.m  |-  ./\  =  ( meet `  K )
dalem53.n  |-  N  =  ( LLines `  K )
dalem53.o  |-  O  =  ( LPlanes `  K )
dalem53.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem53.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem53.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
dalem53.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
dalem53.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
dalem53.b1  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
Assertion
Ref Expression
dalem53  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  e.  N )

Proof of Theorem dalem53
StepHypRef Expression
1 dalem.ph . . 3  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . 3  |-  .<_  =  ( le `  K )
3 dalem.j . . 3  |-  .\/  =  ( join `  K )
4 dalem.a . . 3  |-  A  =  ( Atoms `  K )
5 dalem.ps . . 3  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
6 dalem53.m . . 3  |-  ./\  =  ( meet `  K )
7 dalem53.o . . 3  |-  O  =  ( LPlanes `  K )
8 dalem53.y . . 3  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
9 dalem53.z . . 3  |-  Z  =  ( ( S  .\/  T )  .\/  U )
10 dalem53.g . . 3  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
11 dalem53.h . . 3  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
12 dalem53.i . . 3  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem51 35548 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( ( K  e.  HL  /\  c  e.  A )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A
)  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  ( ( ( G 
.\/  H )  .\/  I )  e.  O  /\  Y  e.  O
)  /\  ( ( -.  c  .<_  ( G 
.\/  H )  /\  -.  c  .<_  ( H 
.\/  I )  /\  -.  c  .<_  ( I 
.\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q
)  /\  -.  c  .<_  ( Q  .\/  R
)  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) )  /\  (
( G  .\/  H
)  .\/  I )  =/=  Y ) )
14 eqid 2457 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
1514, 4atbase 35115 . . . . 5  |-  ( c  e.  A  ->  c  e.  ( Base `  K
) )
1615anim2i 569 . . . 4  |-  ( ( K  e.  HL  /\  c  e.  A )  ->  ( K  e.  HL  /\  c  e.  ( Base `  K ) ) )
17163anim1i 1182 . . 3  |-  ( ( ( K  e.  HL  /\  c  e.  A )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )
)  ->  ( ( K  e.  HL  /\  c  e.  ( Base `  K
) )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) ) )
18 biid 236 . . . 4  |-  ( ( ( ( K  e.  HL  /\  c  e.  ( Base `  K
) )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  (
( ( G  .\/  H )  .\/  I )  e.  O  /\  Y  e.  O )  /\  (
( -.  c  .<_  ( G  .\/  H )  /\  -.  c  .<_  ( H  .\/  I )  /\  -.  c  .<_  ( I  .\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q )  /\  -.  c  .<_  ( Q  .\/  R )  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) )  <->  ( (
( K  e.  HL  /\  c  e.  ( Base `  K ) )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A
)  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  ( ( ( G 
.\/  H )  .\/  I )  e.  O  /\  Y  e.  O
)  /\  ( ( -.  c  .<_  ( G 
.\/  H )  /\  -.  c  .<_  ( H 
.\/  I )  /\  -.  c  .<_  ( I 
.\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q
)  /\  -.  c  .<_  ( Q  .\/  R
)  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) ) )
19 dalem53.n . . . 4  |-  N  =  ( LLines `  K )
20 eqid 2457 . . . 4  |-  ( ( G  .\/  H ) 
.\/  I )  =  ( ( G  .\/  H )  .\/  I )
21 dalem53.b1 . . . 4  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
2218, 2, 3, 4, 6, 19, 7, 20, 8, 21dalem15 35503 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  c  e.  ( Base `  K
) )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  (
( ( G  .\/  H )  .\/  I )  e.  O  /\  Y  e.  O )  /\  (
( -.  c  .<_  ( G  .\/  H )  /\  -.  c  .<_  ( H  .\/  I )  /\  -.  c  .<_  ( I  .\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q )  /\  -.  c  .<_  ( Q  .\/  R )  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) )  /\  (
( G  .\/  H
)  .\/  I )  =/=  Y )  ->  B  e.  N )
2317, 22syl3anl1 1276 . 2  |-  ( ( ( ( ( K  e.  HL  /\  c  e.  A )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  (
( ( G  .\/  H )  .\/  I )  e.  O  /\  Y  e.  O )  /\  (
( -.  c  .<_  ( G  .\/  H )  /\  -.  c  .<_  ( H  .\/  I )  /\  -.  c  .<_  ( I  .\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q )  /\  -.  c  .<_  ( Q  .\/  R )  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) )  /\  (
( G  .\/  H
)  .\/  I )  =/=  Y )  ->  B  e.  N )
2413, 23syl 16 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  e.  N )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Basecbs 14643   lecple 14718   joincjn 15699   meetcmee 15700   Atomscatm 35089   HLchlt 35176   LLinesclln 35316   LPlanesclpl 35317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-preset 15683  df-poset 15701  df-plt 15714  df-lub 15730  df-glb 15731  df-join 15732  df-meet 15733  df-p0 15795  df-lat 15802  df-clat 15864  df-oposet 35002  df-ol 35004  df-oml 35005  df-covers 35092  df-ats 35093  df-atl 35124  df-cvlat 35148  df-hlat 35177  df-llines 35323  df-lplanes 35324  df-lvols 35325
This theorem is referenced by:  dalem54  35551  dalem55  35552  dalem57  35554  dalem60  35557
  Copyright terms: Public domain W3C validator