Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem44 Structured version   Unicode version

Theorem dalem44 33256
Description: Lemma for dath 33276. Dummy center of perspectivity  c lies outside of plane  G H I. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem44.m  |-  ./\  =  ( meet `  K )
dalem44.o  |-  O  =  ( LPlanes `  K )
dalem44.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem44.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem44.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
dalem44.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
dalem44.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
Assertion
Ref Expression
dalem44  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  c  .<_  ( ( G  .\/  H ) 
.\/  I ) )

Proof of Theorem dalem44
StepHypRef Expression
1 dalem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . . 4  |-  .<_  =  ( le `  K )
3 dalem.j . . . 4  |-  .\/  =  ( join `  K )
4 dalem.a . . . 4  |-  A  =  ( Atoms `  K )
5 dalem.ps . . . 4  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
6 dalem44.m . . . 4  |-  ./\  =  ( meet `  K )
7 dalem44.o . . . 4  |-  O  =  ( LPlanes `  K )
8 dalem44.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
9 dalem44.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
10 dalem44.g . . . 4  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
11 dalem44.h . . . 4  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
12 dalem44.i . . . 4  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem43 33255 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .\/  I )  =/=  Y )
1413necomd 2696 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  =/=  ( ( G 
.\/  H )  .\/  I ) )
151dalemkelat 33164 . . . . . . 7  |-  ( ph  ->  K  e.  Lat )
16153ad2ant1 1027 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  Lat )
175, 4dalemcceb 33229 . . . . . . 7  |-  ( ps 
->  c  e.  ( Base `  K ) )
18173ad2ant3 1029 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  ( Base `  K ) )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem42 33254 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .\/  I )  e.  O )
20 eqid 2423 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2120, 7lplnbase 33074 . . . . . . 7  |-  ( ( ( G  .\/  H
)  .\/  I )  e.  O  ->  ( ( G  .\/  H ) 
.\/  I )  e.  ( Base `  K
) )
2219, 21syl 17 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .\/  I )  e.  ( Base `  K
) )
2320, 2, 3latleeqj1 16314 . . . . . 6  |-  ( ( K  e.  Lat  /\  c  e.  ( Base `  K )  /\  (
( G  .\/  H
)  .\/  I )  e.  ( Base `  K
) )  ->  (
c  .<_  ( ( G 
.\/  H )  .\/  I )  <->  ( c  .\/  ( ( G  .\/  H )  .\/  I ) )  =  ( ( G  .\/  H ) 
.\/  I ) ) )
2416, 18, 22, 23syl3anc 1265 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .<_  ( ( G  .\/  H ) 
.\/  I )  <->  ( c  .\/  ( ( G  .\/  H )  .\/  I ) )  =  ( ( G  .\/  H ) 
.\/  I ) ) )
251, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem28 33240 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  .<_  ( G  .\/  c ) )
261dalemkehl 33163 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  HL )
27263ad2ant1 1027 . . . . . . . . . . . . 13  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
285dalemccea 33223 . . . . . . . . . . . . . 14  |-  ( ps 
->  c  e.  A
)
29283ad2ant3 1029 . . . . . . . . . . . . 13  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  A )
301, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 33236 . . . . . . . . . . . . 13  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
313, 4hlatjcom 32908 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  c  e.  A  /\  G  e.  A )  ->  ( c  .\/  G
)  =  ( G 
.\/  c ) )
3227, 29, 30, 31syl3anc 1265 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  G
)  =  ( G 
.\/  c ) )
3325, 32breqtrrd 4456 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  .<_  ( c  .\/  G ) )
341, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem33 33245 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Q  .<_  ( H  .\/  c ) )
351, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 33241 . . . . . . . . . . . . 13  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  e.  A )
363, 4hlatjcom 32908 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  c  e.  A  /\  H  e.  A )  ->  ( c  .\/  H
)  =  ( H 
.\/  c ) )
3727, 29, 35, 36syl3anc 1265 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  H
)  =  ( H 
.\/  c ) )
3834, 37breqtrrd 4456 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Q  .<_  ( c  .\/  H ) )
391, 4dalempeb 33179 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  ( Base `  K ) )
40393ad2ant1 1027 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  e.  ( Base `  K ) )
4120, 3, 4hlatjcl 32907 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  c  e.  A  /\  G  e.  A )  ->  ( c  .\/  G
)  e.  ( Base `  K ) )
4227, 29, 30, 41syl3anc 1265 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  G
)  e.  ( Base `  K ) )
431, 4dalemqeb 33180 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  ( Base `  K ) )
44433ad2ant1 1027 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Q  e.  ( Base `  K ) )
4520, 3, 4hlatjcl 32907 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  c  e.  A  /\  H  e.  A )  ->  ( c  .\/  H
)  e.  ( Base `  K ) )
4627, 29, 35, 45syl3anc 1265 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  H
)  e.  ( Base `  K ) )
4720, 2, 3latjlej12 16318 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( c  .\/  G
)  e.  ( Base `  K ) )  /\  ( Q  e.  ( Base `  K )  /\  ( c  .\/  H
)  e.  ( Base `  K ) ) )  ->  ( ( P 
.<_  ( c  .\/  G
)  /\  Q  .<_  ( c  .\/  H ) )  ->  ( P  .\/  Q )  .<_  ( ( c  .\/  G ) 
.\/  ( c  .\/  H ) ) ) )
4816, 40, 42, 44, 46, 47syl122anc 1274 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( P  .<_  ( c  .\/  G )  /\  Q  .<_  ( c 
.\/  H ) )  ->  ( P  .\/  Q )  .<_  ( (
c  .\/  G )  .\/  ( c  .\/  H
) ) ) )
4933, 38, 48mp2and 684 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  Q
)  .<_  ( ( c 
.\/  G )  .\/  ( c  .\/  H
) ) )
5020, 4atbase 32830 . . . . . . . . . . . 12  |-  ( G  e.  A  ->  G  e.  ( Base `  K
) )
5130, 50syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  ( Base `  K ) )
5220, 4atbase 32830 . . . . . . . . . . . 12  |-  ( H  e.  A  ->  H  e.  ( Base `  K
) )
5335, 52syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  e.  ( Base `  K ) )
5420, 3latjjdi 16354 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( c  e.  (
Base `  K )  /\  G  e.  ( Base `  K )  /\  H  e.  ( Base `  K ) ) )  ->  ( c  .\/  ( G  .\/  H ) )  =  ( ( c  .\/  G ) 
.\/  ( c  .\/  H ) ) )
5516, 18, 51, 53, 54syl13anc 1267 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  ( G  .\/  H ) )  =  ( ( c 
.\/  G )  .\/  ( c  .\/  H
) ) )
5649, 55breqtrrd 4456 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  Q
)  .<_  ( c  .\/  ( G  .\/  H ) ) )
571, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem37 33249 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  R  .<_  ( I  .\/  c ) )
581, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem34 33246 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  A )
593, 4hlatjcom 32908 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  c  e.  A  /\  I  e.  A )  ->  ( c  .\/  I
)  =  ( I 
.\/  c ) )
6027, 29, 58, 59syl3anc 1265 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  I
)  =  ( I 
.\/  c ) )
6157, 60breqtrrd 4456 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  R  .<_  ( c  .\/  I ) )
621, 3, 4dalempjqeb 33185 . . . . . . . . . . 11  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
63623ad2ant1 1027 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
6420, 3, 4hlatjcl 32907 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  G  e.  A  /\  H  e.  A )  ->  ( G  .\/  H
)  e.  ( Base `  K ) )
6527, 30, 35, 64syl3anc 1265 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .\/  H
)  e.  ( Base `  K ) )
6620, 3latjcl 16302 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  c  e.  ( Base `  K )  /\  ( G  .\/  H )  e.  ( Base `  K
) )  ->  (
c  .\/  ( G  .\/  H ) )  e.  ( Base `  K
) )
6716, 18, 65, 66syl3anc 1265 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  ( G  .\/  H ) )  e.  ( Base `  K
) )
681, 4dalemreb 33181 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  ( Base `  K ) )
69683ad2ant1 1027 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  R  e.  ( Base `  K ) )
7020, 3, 4hlatjcl 32907 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  c  e.  A  /\  I  e.  A )  ->  ( c  .\/  I
)  e.  ( Base `  K ) )
7127, 29, 58, 70syl3anc 1265 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  I
)  e.  ( Base `  K ) )
7220, 2, 3latjlej12 16318 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  (
c  .\/  ( G  .\/  H ) )  e.  ( Base `  K
) )  /\  ( R  e.  ( Base `  K )  /\  (
c  .\/  I )  e.  ( Base `  K
) ) )  -> 
( ( ( P 
.\/  Q )  .<_  ( c  .\/  ( G  .\/  H ) )  /\  R  .<_  ( c 
.\/  I ) )  ->  ( ( P 
.\/  Q )  .\/  R )  .<_  ( (
c  .\/  ( G  .\/  H ) )  .\/  ( c  .\/  I
) ) ) )
7316, 63, 67, 69, 71, 72syl122anc 1274 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( P 
.\/  Q )  .<_  ( c  .\/  ( G  .\/  H ) )  /\  R  .<_  ( c 
.\/  I ) )  ->  ( ( P 
.\/  Q )  .\/  R )  .<_  ( (
c  .\/  ( G  .\/  H ) )  .\/  ( c  .\/  I
) ) ) )
7456, 61, 73mp2and 684 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( P  .\/  Q )  .\/  R ) 
.<_  ( ( c  .\/  ( G  .\/  H ) )  .\/  ( c 
.\/  I ) ) )
7520, 4atbase 32830 . . . . . . . . . 10  |-  ( I  e.  A  ->  I  e.  ( Base `  K
) )
7658, 75syl 17 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  ( Base `  K ) )
7720, 3latjjdi 16354 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( c  e.  (
Base `  K )  /\  ( G  .\/  H
)  e.  ( Base `  K )  /\  I  e.  ( Base `  K
) ) )  -> 
( c  .\/  (
( G  .\/  H
)  .\/  I )
)  =  ( ( c  .\/  ( G 
.\/  H ) ) 
.\/  ( c  .\/  I ) ) )
7816, 18, 65, 76, 77syl13anc 1267 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  (
( G  .\/  H
)  .\/  I )
)  =  ( ( c  .\/  ( G 
.\/  H ) ) 
.\/  ( c  .\/  I ) ) )
7974, 78breqtrrd 4456 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( P  .\/  Q )  .\/  R ) 
.<_  ( c  .\/  (
( G  .\/  H
)  .\/  I )
) )
808, 79syl5eqbr 4463 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  .<_  ( c  .\/  ( ( G  .\/  H )  .\/  I ) ) )
81 breq2 4433 . . . . . 6  |-  ( ( c  .\/  ( ( G  .\/  H ) 
.\/  I ) )  =  ( ( G 
.\/  H )  .\/  I )  ->  ( Y  .<_  ( c  .\/  ( ( G  .\/  H )  .\/  I ) )  <->  Y  .<_  ( ( G  .\/  H ) 
.\/  I ) ) )
8280, 81syl5ibcom 224 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  ( ( G  .\/  H )  .\/  I ) )  =  ( ( G  .\/  H ) 
.\/  I )  ->  Y  .<_  ( ( G 
.\/  H )  .\/  I ) ) )
8324, 82sylbid 219 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .<_  ( ( G  .\/  H ) 
.\/  I )  ->  Y  .<_  ( ( G 
.\/  H )  .\/  I ) ) )
841dalemyeo 33172 . . . . . 6  |-  ( ph  ->  Y  e.  O )
85843ad2ant1 1027 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  e.  O )
862, 7lplncmp 33102 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  O  /\  ( ( G  .\/  H )  .\/  I )  e.  O )  -> 
( Y  .<_  ( ( G  .\/  H ) 
.\/  I )  <->  Y  =  ( ( G  .\/  H )  .\/  I ) ) )
8727, 85, 19, 86syl3anc 1265 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( Y  .<_  ( ( G  .\/  H ) 
.\/  I )  <->  Y  =  ( ( G  .\/  H )  .\/  I ) ) )
8883, 87sylibd 218 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .<_  ( ( G  .\/  H ) 
.\/  I )  ->  Y  =  ( ( G  .\/  H )  .\/  I ) ) )
8988necon3ad 2635 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( Y  =/=  (
( G  .\/  H
)  .\/  I )  ->  -.  c  .<_  ( ( G  .\/  H ) 
.\/  I ) ) )
9014, 89mpd 15 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  c  .<_  ( ( G  .\/  H ) 
.\/  I ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1873    =/= wne 2619   class class class wbr 4429   ` cfv 5607  (class class class)co 6311   Basecbs 15126   lecple 15202   joincjn 16194   meetcmee 16195   Latclat 16296   Atomscatm 32804   HLchlt 32891   LPlanesclpl 33032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1664  ax-4 1677  ax-5 1753  ax-6 1799  ax-7 1844  ax-8 1875  ax-9 1877  ax-10 1892  ax-11 1897  ax-12 1910  ax-13 2058  ax-ext 2402  ax-rep 4542  ax-sep 4552  ax-nul 4561  ax-pow 4608  ax-pr 4666  ax-un 6603
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1659  df-nf 1663  df-sb 1792  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3087  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3918  df-pw 3989  df-sn 4005  df-pr 4007  df-op 4011  df-uni 4226  df-iun 4307  df-br 4430  df-opab 4489  df-mpt 4490  df-id 4774  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5571  df-fun 5609  df-fn 5610  df-f 5611  df-f1 5612  df-fo 5613  df-f1o 5614  df-fv 5615  df-riota 6273  df-ov 6314  df-oprab 6315  df-preset 16178  df-poset 16196  df-plt 16209  df-lub 16225  df-glb 16226  df-join 16227  df-meet 16228  df-p0 16290  df-lat 16297  df-clat 16359  df-oposet 32717  df-ol 32719  df-oml 32720  df-covers 32807  df-ats 32808  df-atl 32839  df-cvlat 32863  df-hlat 32892  df-llines 33038  df-lplanes 33039  df-lvols 33040
This theorem is referenced by:  dalem45  33257
  Copyright terms: Public domain W3C validator