Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem4 Structured version   Unicode version

Theorem dalem4 34862
Description: Lemma for dalemdnee 34863. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem3.m  |-  ./\  =  ( meet `  K )
dalem3.o  |-  O  =  ( LPlanes `  K )
dalem3.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem3.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem3.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
dalem3.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
Assertion
Ref Expression
dalem4  |-  ( (
ph  /\  D  =/=  T )  ->  D  =/=  E )

Proof of Theorem dalem4
StepHypRef Expression
1 dalema.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalemc.l . . . . 5  |-  .<_  =  ( le `  K )
3 dalemc.j . . . . 5  |-  .\/  =  ( join `  K )
4 dalemc.a . . . . 5  |-  A  =  ( Atoms `  K )
51, 2, 3, 4dalemswapyz 34853 . . . 4  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) ) )
65adantr 465 . . 3  |-  ( (
ph  /\  D  =/=  T )  ->  ( (
( K  e.  HL  /\  C  e.  ( Base `  K ) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
)  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  ( Z  e.  O  /\  Y  e.  O
)  /\  ( ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T  .\/  Q )  /\  C  .<_  ( U 
.\/  R ) ) ) ) )
7 dalem3.d . . . . . 6  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
81dalemkelat 34821 . . . . . . 7  |-  ( ph  ->  K  e.  Lat )
91, 3, 4dalempjqeb 34842 . . . . . . 7  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
101, 3, 4dalemsjteb 34843 . . . . . . 7  |-  ( ph  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
11 eqid 2467 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
12 dalem3.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
1311, 12latmcom 15579 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  =  ( ( S  .\/  T ) 
./\  ( P  .\/  Q ) ) )
148, 9, 10, 13syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  =  ( ( S  .\/  T )  ./\  ( P  .\/  Q ) ) )
157, 14syl5eq 2520 . . . . 5  |-  ( ph  ->  D  =  ( ( S  .\/  T ) 
./\  ( P  .\/  Q ) ) )
1615neeq1d 2744 . . . 4  |-  ( ph  ->  ( D  =/=  T  <->  ( ( S  .\/  T
)  ./\  ( P  .\/  Q ) )  =/= 
T ) )
1716biimpa 484 . . 3  |-  ( (
ph  /\  D  =/=  T )  ->  ( ( S  .\/  T )  ./\  ( P  .\/  Q ) )  =/=  T )
18 biid 236 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) )  <-> 
( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) ) )
19 dalem3.o . . . 4  |-  O  =  ( LPlanes `  K )
20 dalem3.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
21 dalem3.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
22 eqid 2467 . . . 4  |-  ( ( S  .\/  T ) 
./\  ( P  .\/  Q ) )  =  ( ( S  .\/  T
)  ./\  ( P  .\/  Q ) )
23 eqid 2467 . . . 4  |-  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) )  =  ( ( T  .\/  U
)  ./\  ( Q  .\/  R ) )
2418, 2, 3, 4, 12, 19, 20, 21, 22, 23dalem3 34861 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  ( Z  e.  O  /\  Y  e.  O )  /\  ( ( -.  C  .<_  ( S  .\/  T
)  /\  -.  C  .<_  ( T  .\/  U
)  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( -.  C  .<_  ( P 
.\/  Q )  /\  -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P ) )  /\  ( C  .<_  ( S  .\/  P )  /\  C  .<_  ( T 
.\/  Q )  /\  C  .<_  ( U  .\/  R ) ) ) )  /\  ( ( S 
.\/  T )  ./\  ( P  .\/  Q ) )  =/=  T )  ->  ( ( S 
.\/  T )  ./\  ( P  .\/  Q ) )  =/=  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) ) )
256, 17, 24syl2anc 661 . 2  |-  ( (
ph  /\  D  =/=  T )  ->  ( ( S  .\/  T )  ./\  ( P  .\/  Q ) )  =/=  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) ) )
2615adantr 465 . 2  |-  ( (
ph  /\  D  =/=  T )  ->  D  =  ( ( S  .\/  T )  ./\  ( P  .\/  Q ) ) )
27 dalem3.e . . . 4  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
281dalemkehl 34820 . . . . . 6  |-  ( ph  ->  K  e.  HL )
291dalemqea 34824 . . . . . 6  |-  ( ph  ->  Q  e.  A )
301dalemrea 34825 . . . . . 6  |-  ( ph  ->  R  e.  A )
3111, 3, 4hlatjcl 34564 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
3228, 29, 30, 31syl3anc 1228 . . . . 5  |-  ( ph  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
331, 3, 4dalemtjueb 34844 . . . . 5  |-  ( ph  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
3411, 12latmcom 15579 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  ( T  .\/  U )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  =  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) ) )
358, 32, 33, 34syl3anc 1228 . . . 4  |-  ( ph  ->  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )  =  ( ( T  .\/  U )  ./\  ( Q  .\/  R ) ) )
3627, 35syl5eq 2520 . . 3  |-  ( ph  ->  E  =  ( ( T  .\/  U ) 
./\  ( Q  .\/  R ) ) )
3736adantr 465 . 2  |-  ( (
ph  /\  D  =/=  T )  ->  E  =  ( ( T  .\/  U )  ./\  ( Q  .\/  R ) ) )
3825, 26, 373netr4d 2772 1  |-  ( (
ph  /\  D  =/=  T )  ->  D  =/=  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   Basecbs 14507   lecple 14579   joincjn 15448   meetcmee 15449   Latclat 15549   Atomscatm 34461   HLchlt 34548   LPlanesclpl 34689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-lat 15550  df-clat 15612  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-atl 34496  df-cvlat 34520  df-hlat 34549  df-llines 34695  df-lplanes 34696
This theorem is referenced by:  dalemdnee  34863
  Copyright terms: Public domain W3C validator