Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem32 Structured version   Unicode version

Theorem dalem32 33687
Description: Lemma for dath 33719. Analog of dalem27 33682 for  H. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem29.m  |-  ./\  =  ( meet `  K )
dalem29.o  |-  O  =  ( LPlanes `  K )
dalem29.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem29.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem29.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
Assertion
Ref Expression
dalem32  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  .<_  ( H  .\/  Q ) )

Proof of Theorem dalem32
StepHypRef Expression
1 dalem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . . 4  |-  .<_  =  ( le `  K )
3 dalem.j . . . 4  |-  .\/  =  ( join `  K )
4 dalem.a . . . 4  |-  A  =  ( Atoms `  K )
5 dalem29.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
6 dalem29.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
71, 2, 3, 4, 5, 6dalemrot 33640 . . 3  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
873ad2ant1 1009 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
91, 2, 3, 4, 5, 6dalemrotyz 33641 . . 3  |-  ( (
ph  /\  Y  =  Z )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( T 
.\/  U )  .\/  S ) )
1093adant3 1008 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( Q  .\/  R )  .\/  P )  =  ( ( T 
.\/  U )  .\/  S ) )
11 dalem.ps . . . 4  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
121, 2, 3, 4, 11, 5dalemrotps 33674 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
13123adant2 1007 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
14 biid 236 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  <->  ( (
( K  e.  HL  /\  C  e.  ( Base `  K ) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A ) )  /\  ( ( ( Q 
.\/  R )  .\/  P )  e.  O  /\  ( ( T  .\/  U )  .\/  S )  e.  O )  /\  ( ( -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
)  /\  -.  C  .<_  ( P  .\/  Q
) )  /\  ( -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S )  /\  -.  C  .<_  ( S 
.\/  T ) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U )  /\  C  .<_  ( P  .\/  S ) ) ) ) )
15 biid 236 . . 3  |-  ( ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  ( ( Q  .\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q  .\/  R )  .\/  P )  /\  C  .<_  ( c 
.\/  d ) ) )  <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q 
.\/  R )  .\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )
16 dalem29.m . . 3  |-  ./\  =  ( meet `  K )
17 dalem29.o . . 3  |-  O  =  ( LPlanes `  K )
18 eqid 2454 . . 3  |-  ( ( Q  .\/  R ) 
.\/  P )  =  ( ( Q  .\/  R )  .\/  P )
19 eqid 2454 . . 3  |-  ( ( T  .\/  U ) 
.\/  S )  =  ( ( T  .\/  U )  .\/  S )
20 dalem29.h . . 3  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
2114, 2, 3, 4, 15, 16, 17, 18, 19, 20dalem27 33682 . 2  |-  ( ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  /\  (
( Q  .\/  R
)  .\/  P )  =  ( ( T 
.\/  U )  .\/  S )  /\  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  ( ( Q  .\/  R ) 
.\/  P )  /\  ( d  =/=  c  /\  -.  d  .<_  ( ( Q  .\/  R ) 
.\/  P )  /\  C  .<_  ( c  .\/  d ) ) ) )  ->  c  .<_  ( H  .\/  Q ) )
228, 10, 13, 21syl3anc 1219 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  .<_  ( H  .\/  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   Basecbs 14293   lecple 14365   joincjn 15234   meetcmee 15235   Atomscatm 33247   HLchlt 33334   LPlanesclpl 33475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-lat 15336  df-clat 15398  df-oposet 33160  df-ol 33162  df-oml 33163  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-llines 33481  df-lplanes 33482
This theorem is referenced by:  dalem36  33691  dalem51  33706  dalem52  33707
  Copyright terms: Public domain W3C validator