Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem25 Structured version   Unicode version

Theorem dalem25 33651
Description: Lemma for dath 33689. Show that the dummy center of perspectivity  c is different from auxiliary atom  G. (Contributed by NM, 3-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem23.m  |-  ./\  =  ( meet `  K )
dalem23.o  |-  O  =  ( LPlanes `  K )
dalem23.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem23.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem23.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
Assertion
Ref Expression
dalem25  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  =/=  G )

Proof of Theorem dalem25
StepHypRef Expression
1 dalem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . . 4  |-  .<_  =  ( le `  K )
3 dalem.j . . . 4  |-  .\/  =  ( join `  K )
4 dalem.a . . . 4  |-  A  =  ( Atoms `  K )
51, 2, 3, 4dalemcnes 33603 . . 3  |-  ( ph  ->  C  =/=  S )
653ad2ant1 1009 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  C  =/=  S )
7 dalem.ps . . . . . . . . . . 11  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
87dalemclccjdd 33641 . . . . . . . . . 10  |-  ( ps 
->  C  .<_  ( c 
.\/  d ) )
983ad2ant3 1011 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  C  .<_  ( c  .\/  d ) )
109adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  C  .<_  ( c  .\/  d ) )
11 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  c  =  G )
12 dalem23.g . . . . . . . . . . . . 13  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
131dalemkelat 33577 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K  e.  Lat )
14133ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  Lat )
151dalemkehl 33576 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  HL )
16153ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
177dalemccea 33636 . . . . . . . . . . . . . . . 16  |-  ( ps 
->  c  e.  A
)
18173ad2ant3 1011 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  A )
191dalempea 33579 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  A )
20193ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  e.  A )
21 eqid 2451 . . . . . . . . . . . . . . . 16  |-  ( Base `  K )  =  (
Base `  K )
2221, 3, 4hlatjcl 33320 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  ->  ( c  .\/  P
)  e.  ( Base `  K ) )
2316, 18, 20, 22syl3anc 1219 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  e.  ( Base `  K ) )
247dalemddea 33637 . . . . . . . . . . . . . . . 16  |-  ( ps 
->  d  e.  A
)
25243ad2ant3 1011 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  A )
261dalemsea 33582 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S  e.  A )
27263ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  e.  A )
2821, 3, 4hlatjcl 33320 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  ->  ( d  .\/  S
)  e.  ( Base `  K ) )
2916, 25, 27, 28syl3anc 1219 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  e.  ( Base `  K ) )
30 dalem23.m . . . . . . . . . . . . . . 15  |-  ./\  =  ( meet `  K )
3121, 2, 30latmle2 15358 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  ( c  .\/  P
)  e.  ( Base `  K )  /\  (
d  .\/  S )  e.  ( Base `  K
) )  ->  (
( c  .\/  P
)  ./\  ( d  .\/  S ) )  .<_  ( d  .\/  S
) )
3214, 23, 29, 31syl3anc 1219 . . . . . . . . . . . . 13  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  ( d  .\/  S ) )  .<_  ( d  .\/  S
) )
3312, 32syl5eqbr 4426 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  .<_  ( d  .\/  S ) )
343, 4hlatjcom 33321 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  ->  ( d  .\/  S
)  =  ( S 
.\/  d ) )
3516, 25, 27, 34syl3anc 1219 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  =  ( S 
.\/  d ) )
3633, 35breqtrd 4417 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  .<_  ( S  .\/  d ) )
3736adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  G  .<_  ( S  .\/  d ) )
3811, 37eqbrtrd 4413 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  c  .<_  ( S  .\/  d ) )
392, 3, 4hlatlej2 33329 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  S  e.  A  /\  d  e.  A )  ->  d  .<_  ( S  .\/  d ) )
4016, 27, 25, 39syl3anc 1219 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  .<_  ( S  .\/  d ) )
4140adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  d  .<_  ( S  .\/  d ) )
427, 4dalemcceb 33642 . . . . . . . . . . . 12  |-  ( ps 
->  c  e.  ( Base `  K ) )
43423ad2ant3 1011 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  ( Base `  K ) )
4421, 4atbase 33243 . . . . . . . . . . . . 13  |-  ( d  e.  A  ->  d  e.  ( Base `  K
) )
4524, 44syl 16 . . . . . . . . . . . 12  |-  ( ps 
->  d  e.  ( Base `  K ) )
46453ad2ant3 1011 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  ( Base `  K ) )
4721, 3, 4hlatjcl 33320 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  e.  A  /\  d  e.  A )  ->  ( S  .\/  d
)  e.  ( Base `  K ) )
4816, 27, 25, 47syl3anc 1219 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( S  .\/  d
)  e.  ( Base `  K ) )
4921, 2, 3latjle12 15343 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( c  e.  (
Base `  K )  /\  d  e.  ( Base `  K )  /\  ( S  .\/  d )  e.  ( Base `  K
) ) )  -> 
( ( c  .<_  ( S  .\/  d )  /\  d  .<_  ( S 
.\/  d ) )  <-> 
( c  .\/  d
)  .<_  ( S  .\/  d ) ) )
5014, 43, 46, 48, 49syl13anc 1221 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .<_  ( S  .\/  d )  /\  d  .<_  ( S 
.\/  d ) )  <-> 
( c  .\/  d
)  .<_  ( S  .\/  d ) ) )
5150adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  ( (
c  .<_  ( S  .\/  d )  /\  d  .<_  ( S  .\/  d
) )  <->  ( c  .\/  d )  .<_  ( S 
.\/  d ) ) )
5238, 41, 51mpbi2and 912 . . . . . . . 8  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  ( c  .\/  d )  .<_  ( S 
.\/  d ) )
531, 4dalemceb 33591 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( Base `  K ) )
54533ad2ant1 1009 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  C  e.  ( Base `  K ) )
5521, 3, 4hlatjcl 33320 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  c  e.  A  /\  d  e.  A )  ->  ( c  .\/  d
)  e.  ( Base `  K ) )
5616, 18, 25, 55syl3anc 1219 . . . . . . . . . 10  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  d
)  e.  ( Base `  K ) )
5721, 2lattr 15337 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( c  .\/  d
)  e.  ( Base `  K )  /\  ( S  .\/  d )  e.  ( Base `  K
) ) )  -> 
( ( C  .<_  ( c  .\/  d )  /\  ( c  .\/  d )  .<_  ( S 
.\/  d ) )  ->  C  .<_  ( S 
.\/  d ) ) )
5814, 54, 56, 48, 57syl13anc 1221 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( C  .<_  ( c  .\/  d )  /\  ( c  .\/  d )  .<_  ( S 
.\/  d ) )  ->  C  .<_  ( S 
.\/  d ) ) )
5958adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  ( ( C  .<_  ( c  .\/  d )  /\  (
c  .\/  d )  .<_  ( S  .\/  d
) )  ->  C  .<_  ( S  .\/  d
) ) )
6010, 52, 59mp2and 679 . . . . . . 7  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  C  .<_  ( S  .\/  d ) )
61 dalem23.o . . . . . . . . . . 11  |-  O  =  ( LPlanes `  K )
621, 61dalemyeb 33602 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  ( Base `  K ) )
63623ad2ant1 1009 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  e.  ( Base `  K ) )
6421, 2, 30latmlem1 15362 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( S  .\/  d )  e.  ( Base `  K
)  /\  Y  e.  ( Base `  K )
) )  ->  ( C  .<_  ( S  .\/  d )  ->  ( C  ./\  Y )  .<_  ( ( S  .\/  d )  ./\  Y
) ) )
6514, 54, 48, 63, 64syl13anc 1221 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( C  .<_  ( S 
.\/  d )  -> 
( C  ./\  Y
)  .<_  ( ( S 
.\/  d )  ./\  Y ) ) )
6665adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  ( C  .<_  ( S  .\/  d
)  ->  ( C  ./\ 
Y )  .<_  ( ( S  .\/  d ) 
./\  Y ) ) )
6760, 66mpd 15 . . . . . 6  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  ( C  ./\ 
Y )  .<_  ( ( S  .\/  d ) 
./\  Y ) )
68 dalem23.y . . . . . . . . . 10  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
69 dalem23.z . . . . . . . . . 10  |-  Z  =  ( ( S  .\/  T )  .\/  U )
701, 2, 3, 4, 61, 68, 69dalem17 33633 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z )  ->  C  .<_  Y )
71703adant3 1008 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  C  .<_  Y )
7221, 2, 30latleeqm1 15360 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  C  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( C  .<_  Y  <->  ( C  ./\ 
Y )  =  C ) )
7314, 54, 63, 72syl3anc 1219 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( C  .<_  Y  <->  ( C  ./\ 
Y )  =  C ) )
7471, 73mpbid 210 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( C  ./\  Y
)  =  C )
7574adantr 465 . . . . . 6  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  ( C  ./\ 
Y )  =  C )
761, 2, 3, 4, 69dalemsly 33608 . . . . . . . . 9  |-  ( (
ph  /\  Y  =  Z )  ->  S  .<_  Y )
77763adant3 1008 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  .<_  Y )
787dalem-ddly 33639 . . . . . . . . 9  |-  ( ps 
->  -.  d  .<_  Y )
79783ad2ant3 1011 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  d  .<_  Y )
8021, 2, 3, 30, 42atjm 33398 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  d  e.  A  /\  Y  e.  ( Base `  K ) )  /\  ( S  .<_  Y  /\  -.  d  .<_  Y ) )  -> 
( ( S  .\/  d )  ./\  Y
)  =  S )
8116, 27, 25, 63, 77, 79, 80syl132anc 1237 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( S  .\/  d )  ./\  Y
)  =  S )
8281adantr 465 . . . . . 6  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  ( ( S  .\/  d )  ./\  Y )  =  S )
8367, 75, 823brtr3d 4422 . . . . 5  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  C  .<_  S )
84 hlatl 33314 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  AtLat )
8515, 84syl 16 . . . . . . . 8  |-  ( ph  ->  K  e.  AtLat )
861, 2, 3, 4, 61, 68dalemcea 33613 . . . . . . . 8  |-  ( ph  ->  C  e.  A )
872, 4atcmp 33265 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  C  e.  A  /\  S  e.  A )  ->  ( C  .<_  S  <->  C  =  S ) )
8885, 86, 26, 87syl3anc 1219 . . . . . . 7  |-  ( ph  ->  ( C  .<_  S  <->  C  =  S ) )
89883ad2ant1 1009 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( C  .<_  S  <->  C  =  S ) )
9089adantr 465 . . . . 5  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  ( C  .<_  S  <->  C  =  S
) )
9183, 90mpbid 210 . . . 4  |-  ( ( ( ph  /\  Y  =  Z  /\  ps )  /\  c  =  G
)  ->  C  =  S )
9291ex 434 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  =  G  ->  C  =  S ) )
9392necon3d 2672 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( C  =/=  S  ->  c  =/=  G ) )
946, 93mpd 15 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  =/=  G )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   class class class wbr 4393   ` cfv 5519  (class class class)co 6193   Basecbs 14285   lecple 14356   joincjn 15225   meetcmee 15226   Latclat 15326   Atomscatm 33217   AtLatcal 33218   HLchlt 33304   LPlanesclpl 33445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-poset 15227  df-plt 15239  df-lub 15255  df-glb 15256  df-join 15257  df-meet 15258  df-p0 15320  df-lat 15327  df-clat 15389  df-oposet 33130  df-ol 33132  df-oml 33133  df-covers 33220  df-ats 33221  df-atl 33252  df-cvlat 33276  df-hlat 33305  df-llines 33451  df-lplanes 33452
This theorem is referenced by:  dalem28  33653  dalem31N  33656
  Copyright terms: Public domain W3C validator