Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem24 Structured version   Unicode version

Theorem dalem24 34710
Description: Lemma for dath 34749. Show that auxiliary atom  G is outside of plane  Y. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem23.m  |-  ./\  =  ( meet `  K )
dalem23.o  |-  O  =  ( LPlanes `  K )
dalem23.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem23.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem23.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
Assertion
Ref Expression
dalem24  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  G  .<_  Y )

Proof of Theorem dalem24
StepHypRef Expression
1 dalem23.g . . . . 5  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
21oveq1i 6295 . . . 4  |-  ( G 
./\  Y )  =  ( ( ( c 
.\/  P )  ./\  ( d  .\/  S
) )  ./\  Y
)
3 dalem.ph . . . . . . . 8  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
43dalemkehl 34636 . . . . . . 7  |-  ( ph  ->  K  e.  HL )
5 hlol 34375 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
64, 5syl 16 . . . . . 6  |-  ( ph  ->  K  e.  OL )
763ad2ant1 1017 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  OL )
843ad2ant1 1017 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
9 dalem.ps . . . . . . . 8  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
109dalemccea 34696 . . . . . . 7  |-  ( ps 
->  c  e.  A
)
11103ad2ant3 1019 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  A )
123dalempea 34639 . . . . . . 7  |-  ( ph  ->  P  e.  A )
13123ad2ant1 1017 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  e.  A )
14 eqid 2467 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
15 dalem.j . . . . . . 7  |-  .\/  =  ( join `  K )
16 dalem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
1714, 15, 16hlatjcl 34380 . . . . . 6  |-  ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  ->  ( c  .\/  P
)  e.  ( Base `  K ) )
188, 11, 13, 17syl3anc 1228 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  e.  ( Base `  K ) )
199dalemddea 34697 . . . . . . 7  |-  ( ps 
->  d  e.  A
)
20193ad2ant3 1019 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  A )
213dalemsea 34642 . . . . . . 7  |-  ( ph  ->  S  e.  A )
22213ad2ant1 1017 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  e.  A )
2314, 15, 16hlatjcl 34380 . . . . . 6  |-  ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  ->  ( d  .\/  S
)  e.  ( Base `  K ) )
248, 20, 22, 23syl3anc 1228 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  e.  ( Base `  K ) )
25 dalem23.o . . . . . . 7  |-  O  =  ( LPlanes `  K )
263, 25dalemyeb 34662 . . . . . 6  |-  ( ph  ->  Y  e.  ( Base `  K ) )
27263ad2ant1 1017 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  e.  ( Base `  K ) )
28 dalem23.m . . . . . 6  |-  ./\  =  ( meet `  K )
2914, 28latmmdir 34249 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( c  .\/  P )  e.  ( Base `  K )  /\  (
d  .\/  S )  e.  ( Base `  K
)  /\  Y  e.  ( Base `  K )
) )  ->  (
( ( c  .\/  P )  ./\  ( d  .\/  S ) )  ./\  Y )  =  ( ( ( c  .\/  P
)  ./\  Y )  ./\  ( ( d  .\/  S )  ./\  Y )
) )
307, 18, 24, 27, 29syl13anc 1230 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( c 
.\/  P )  ./\  ( d  .\/  S
) )  ./\  Y
)  =  ( ( ( c  .\/  P
)  ./\  Y )  ./\  ( ( d  .\/  S )  ./\  Y )
) )
312, 30syl5eq 2520 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  ./\  Y
)  =  ( ( ( c  .\/  P
)  ./\  Y )  ./\  ( ( d  .\/  S )  ./\  Y )
) )
3215, 16hlatjcom 34381 . . . . . . 7  |-  ( ( K  e.  HL  /\  c  e.  A  /\  P  e.  A )  ->  ( c  .\/  P
)  =  ( P 
.\/  c ) )
338, 11, 13, 32syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  P
)  =  ( P 
.\/  c ) )
3433oveq1d 6300 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  Y )  =  ( ( P 
.\/  c )  ./\  Y ) )
35 dalem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
36 dalem23.y . . . . . . . 8  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
373, 35, 15, 16, 25, 36dalemply 34667 . . . . . . 7  |-  ( ph  ->  P  .<_  Y )
38373ad2ant1 1017 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  .<_  Y )
399dalem-ccly 34698 . . . . . . 7  |-  ( ps 
->  -.  c  .<_  Y )
40393ad2ant3 1019 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  c  .<_  Y )
4114, 35, 15, 28, 162atjm 34458 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  c  e.  A  /\  Y  e.  ( Base `  K ) )  /\  ( P  .<_  Y  /\  -.  c  .<_  Y ) )  -> 
( ( P  .\/  c )  ./\  Y
)  =  P )
428, 13, 11, 27, 38, 40, 41syl132anc 1246 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( P  .\/  c )  ./\  Y
)  =  P )
4334, 42eqtrd 2508 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( c  .\/  P )  ./\  Y )  =  P )
4415, 16hlatjcom 34381 . . . . . . 7  |-  ( ( K  e.  HL  /\  d  e.  A  /\  S  e.  A )  ->  ( d  .\/  S
)  =  ( S 
.\/  d ) )
458, 20, 22, 44syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .\/  S
)  =  ( S 
.\/  d ) )
4645oveq1d 6300 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( d  .\/  S )  ./\  Y )  =  ( ( S 
.\/  d )  ./\  Y ) )
47 dalem23.z . . . . . . . 8  |-  Z  =  ( ( S  .\/  T )  .\/  U )
483, 35, 15, 16, 47dalemsly 34668 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z )  ->  S  .<_  Y )
49483adant3 1016 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  S  .<_  Y )
509dalem-ddly 34699 . . . . . . 7  |-  ( ps 
->  -.  d  .<_  Y )
51503ad2ant3 1019 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  d  .<_  Y )
5214, 35, 15, 28, 162atjm 34458 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  d  e.  A  /\  Y  e.  ( Base `  K ) )  /\  ( S  .<_  Y  /\  -.  d  .<_  Y ) )  -> 
( ( S  .\/  d )  ./\  Y
)  =  S )
538, 22, 20, 27, 49, 51, 52syl132anc 1246 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( S  .\/  d )  ./\  Y
)  =  S )
5446, 53eqtrd 2508 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( d  .\/  S )  ./\  Y )  =  S )
5543, 54oveq12d 6303 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( c 
.\/  P )  ./\  Y )  ./\  ( (
d  .\/  S )  ./\  Y ) )  =  ( P  ./\  S
) )
563, 35, 15, 16, 25, 36dalempnes 34664 . . . . 5  |-  ( ph  ->  P  =/=  S )
57 hlatl 34374 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
584, 57syl 16 . . . . . 6  |-  ( ph  ->  K  e.  AtLat )
59 eqid 2467 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
6028, 59, 16atnem0 34332 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  S  e.  A )  ->  ( P  =/=  S  <->  ( P  ./\ 
S )  =  ( 0. `  K ) ) )
6158, 12, 21, 60syl3anc 1228 . . . . 5  |-  ( ph  ->  ( P  =/=  S  <->  ( P  ./\  S )  =  ( 0. `  K ) ) )
6256, 61mpbid 210 . . . 4  |-  ( ph  ->  ( P  ./\  S
)  =  ( 0.
`  K ) )
63623ad2ant1 1017 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  ./\  S
)  =  ( 0.
`  K ) )
6431, 55, 633eqtrd 2512 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  ./\  Y
)  =  ( 0.
`  K ) )
65583ad2ant1 1017 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  AtLat )
663, 35, 15, 16, 9, 28, 25, 36, 47, 1dalem23 34709 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
6714, 35, 28, 59, 16atnle 34331 . . 3  |-  ( ( K  e.  AtLat  /\  G  e.  A  /\  Y  e.  ( Base `  K
) )  ->  ( -.  G  .<_  Y  <->  ( G  ./\ 
Y )  =  ( 0. `  K ) ) )
6865, 66, 27, 67syl3anc 1228 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( -.  G  .<_  Y  <-> 
( G  ./\  Y
)  =  ( 0.
`  K ) ) )
6964, 68mpbird 232 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  G  .<_  Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5588  (class class class)co 6285   Basecbs 14493   lecple 14565   joincjn 15434   meetcmee 15435   0.cp0 15527   OLcol 34188   Atomscatm 34277   AtLatcal 34278   HLchlt 34364   LPlanesclpl 34505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-poset 15436  df-plt 15448  df-lub 15464  df-glb 15465  df-join 15466  df-meet 15467  df-p0 15529  df-lat 15536  df-clat 15598  df-oposet 34190  df-ol 34192  df-oml 34193  df-covers 34280  df-ats 34281  df-atl 34312  df-cvlat 34336  df-hlat 34365  df-llines 34511  df-lplanes 34512
This theorem is referenced by:  dalem27  34712  dalem30  34715  dalem54  34739
  Copyright terms: Public domain W3C validator