Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem20 Structured version   Visualization version   Unicode version

Theorem dalem20 33303
Description: Lemma for dath 33346. Show that a second dummy atom  d exists outside of the  Y and  Z planes (when those planes are equal). (Contributed by NM, 14-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem20.o  |-  O  =  ( LPlanes `  K )
dalem20.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem20.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
Assertion
Ref Expression
dalem20  |-  ( (
ph  /\  Y  =  Z )  ->  E. c E. d ps )
Distinct variable groups:    c, d, A    C, d    K, d    .<_ , c, d    Y, c, d    .\/ , c    P, c    Q, c    R, c    Z, c    ph, c
Allowed substitution hints:    ph( d)    ps( c, d)    C( c)    P( d)    Q( d)    R( d)    S( c, d)    T( c, d)    U( c, d)    .\/ ( d)    K( c)    O( c, d)    Z( d)

Proof of Theorem dalem20
StepHypRef Expression
1 dalem.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalem.l . . . . 5  |-  .<_  =  ( le `  K )
3 dalem.j . . . . 5  |-  .\/  =  ( join `  K )
4 dalem.a . . . . 5  |-  A  =  ( Atoms `  K )
5 dalem20.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
61, 2, 3, 4, 5dalem18 33291 . . . 4  |-  ( ph  ->  E. c  e.  A  -.  c  .<_  Y )
76adantr 471 . . 3  |-  ( (
ph  /\  Y  =  Z )  ->  E. c  e.  A  -.  c  .<_  Y )
8 dalem20.o . . . . . . 7  |-  O  =  ( LPlanes `  K )
9 dalem20.z . . . . . . 7  |-  Z  =  ( ( S  .\/  T )  .\/  U )
101, 2, 3, 4, 8, 5, 9dalem19 33292 . . . . . 6  |-  ( ( ( ( ph  /\  Y  =  Z )  /\  c  e.  A
)  /\  -.  c  .<_  Y )  ->  E. d  e.  A  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) )
1110ex 440 . . . . 5  |-  ( ( ( ph  /\  Y  =  Z )  /\  c  e.  A )  ->  ( -.  c  .<_  Y  ->  E. d  e.  A  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) )
1211ancld 560 . . . 4  |-  ( ( ( ph  /\  Y  =  Z )  /\  c  e.  A )  ->  ( -.  c  .<_  Y  -> 
( -.  c  .<_  Y  /\  E. d  e.  A  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) ) )
1312reximdva 2874 . . 3  |-  ( (
ph  /\  Y  =  Z )  ->  ( E. c  e.  A  -.  c  .<_  Y  ->  E. c  e.  A  ( -.  c  .<_  Y  /\  E. d  e.  A  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) ) )
147, 13mpd 15 . 2  |-  ( (
ph  /\  Y  =  Z )  ->  E. c  e.  A  ( -.  c  .<_  Y  /\  E. d  e.  A  (
d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) )
15 dalem.ps . . . . 5  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
16 3anass 995 . . . . 5  |-  ( ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) )  <->  ( (
c  e.  A  /\  d  e.  A )  /\  ( -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) ) )
1715, 16bitri 257 . . . 4  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  ( -.  c  .<_  Y  /\  (
d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) ) )
18172exbii 1730 . . 3  |-  ( E. c E. d ps  <->  E. c E. d ( ( c  e.  A  /\  d  e.  A
)  /\  ( -.  c  .<_  Y  /\  (
d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) ) )
19 r2ex 2925 . . 3  |-  ( E. c  e.  A  E. d  e.  A  ( -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) )  <->  E. c E. d ( ( c  e.  A  /\  d  e.  A
)  /\  ( -.  c  .<_  Y  /\  (
d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) ) )
20 r19.42v 2957 . . . 4  |-  ( E. d  e.  A  ( -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) )  <-> 
( -.  c  .<_  Y  /\  E. d  e.  A  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) )
2120rexbii 2901 . . 3  |-  ( E. c  e.  A  E. d  e.  A  ( -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) )  <->  E. c  e.  A  ( -.  c  .<_  Y  /\  E. d  e.  A  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) ) )
2218, 19, 213bitr2ri 282 . 2  |-  ( E. c  e.  A  ( -.  c  .<_  Y  /\  E. d  e.  A  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d ) ) )  <->  E. c E. d ps )
2314, 22sylib 201 1  |-  ( (
ph  /\  Y  =  Z )  ->  E. c E. d ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455   E.wex 1674    e. wcel 1898    =/= wne 2633   E.wrex 2750   class class class wbr 4416   ` cfv 5601  (class class class)co 6315   Basecbs 15170   lecple 15246   joincjn 16238   Atomscatm 32874   HLchlt 32961   LPlanesclpl 33102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6277  df-ov 6318  df-oprab 6319  df-preset 16222  df-poset 16240  df-plt 16253  df-lub 16269  df-glb 16270  df-join 16271  df-meet 16272  df-p0 16334  df-p1 16335  df-lat 16341  df-clat 16403  df-oposet 32787  df-ol 32789  df-oml 32790  df-covers 32877  df-ats 32878  df-atl 32909  df-cvlat 32933  df-hlat 32962  df-llines 33108  df-lplanes 33109
This theorem is referenced by:  dalem62  33344
  Copyright terms: Public domain W3C validator