Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem2 Structured version   Unicode version

Theorem dalem2 35108
Description: Lemma for dath 35183. Show the lines  P Q and  S T form a plane. (Contributed by NM, 11-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem1.o  |-  O  =  ( LPlanes `  K )
dalem1.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
Assertion
Ref Expression
dalem2  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  ( S 
.\/  T ) )  e.  O )

Proof of Theorem dalem2
StepHypRef Expression
1 dalema.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkehl 35070 . . 3  |-  ( ph  ->  K  e.  HL )
31dalempea 35073 . . 3  |-  ( ph  ->  P  e.  A )
41dalemqea 35074 . . 3  |-  ( ph  ->  Q  e.  A )
51dalemsea 35076 . . 3  |-  ( ph  ->  S  e.  A )
61dalemtea 35077 . . 3  |-  ( ph  ->  T  e.  A )
7 dalemc.j . . . 4  |-  .\/  =  ( join `  K )
8 dalemc.a . . . 4  |-  A  =  ( Atoms `  K )
97, 8hlatj4 34821 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  ( S 
.\/  T ) )  =  ( ( P 
.\/  S )  .\/  ( Q  .\/  T ) ) )
102, 3, 4, 5, 6, 9syl122anc 1236 . 2  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  ( S 
.\/  T ) )  =  ( ( P 
.\/  S )  .\/  ( Q  .\/  T ) ) )
11 dalemc.l . . . . 5  |-  .<_  =  ( le `  K )
12 dalem1.o . . . . 5  |-  O  =  ( LPlanes `  K )
13 dalem1.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
141, 11, 7, 8, 12, 13dalempjsen 35100 . . . 4  |-  ( ph  ->  ( P  .\/  S
)  e.  ( LLines `  K ) )
151, 11, 7, 8, 12, 13dalemqnet 35099 . . . . 5  |-  ( ph  ->  Q  =/=  T )
16 eqid 2441 . . . . . 6  |-  ( LLines `  K )  =  (
LLines `  K )
177, 8, 16llni2 34959 . . . . 5  |-  ( ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  /\  Q  =/=  T
)  ->  ( Q  .\/  T )  e.  (
LLines `  K ) )
182, 4, 6, 15, 17syl31anc 1230 . . . 4  |-  ( ph  ->  ( Q  .\/  T
)  e.  ( LLines `  K ) )
191, 11, 7, 8, 12, 13dalem1 35106 . . . 4  |-  ( ph  ->  ( P  .\/  S
)  =/=  ( Q 
.\/  T ) )
201, 11, 7, 8, 12, 13dalemcea 35107 . . . . 5  |-  ( ph  ->  C  e.  A )
211dalemclpjs 35081 . . . . 5  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
221dalemclqjt 35082 . . . . 5  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
23 eqid 2441 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
24 eqid 2441 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
2511, 23, 24, 8, 162llnm4 35017 . . . . 5  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  ( P  .\/  S
)  e.  ( LLines `  K )  /\  ( Q  .\/  T )  e.  ( LLines `  K )
)  /\  ( C  .<_  ( P  .\/  S
)  /\  C  .<_  ( Q  .\/  T ) ) )  ->  (
( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) )  =/=  ( 0. `  K ) )
262, 20, 14, 18, 21, 22, 25syl132anc 1245 . . . 4  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  =/=  ( 0. `  K ) )
2723, 24, 8, 162llnmat 34971 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  .\/  S
)  e.  ( LLines `  K )  /\  ( Q  .\/  T )  e.  ( LLines `  K )
)  /\  ( ( P  .\/  S )  =/=  ( Q  .\/  T
)  /\  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  =/=  ( 0. `  K ) ) )  ->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  A
)
282, 14, 18, 19, 26, 27syl32anc 1235 . . 3  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  A
)
297, 23, 8, 16, 122llnmj 35007 . . . 4  |-  ( ( K  e.  HL  /\  ( P  .\/  S )  e.  ( LLines `  K
)  /\  ( Q  .\/  T )  e.  (
LLines `  K ) )  ->  ( ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  A  <->  ( ( P  .\/  S
)  .\/  ( Q  .\/  T ) )  e.  O ) )
302, 14, 18, 29syl3anc 1227 . . 3  |-  ( ph  ->  ( ( ( P 
.\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  A  <->  ( ( P  .\/  S
)  .\/  ( Q  .\/  T ) )  e.  O ) )
3128, 30mpbid 210 . 2  |-  ( ph  ->  ( ( P  .\/  S )  .\/  ( Q 
.\/  T ) )  e.  O )
3210, 31eqeltrd 2529 1  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  ( S 
.\/  T ) )  e.  O )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   class class class wbr 4434   ` cfv 5575  (class class class)co 6278   Basecbs 14506   lecple 14578   joincjn 15444   meetcmee 15445   0.cp0 15538   Atomscatm 34711   HLchlt 34798   LLinesclln 34938   LPlanesclpl 34939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-op 4018  df-uni 4232  df-iun 4314  df-br 4435  df-opab 4493  df-mpt 4494  df-id 4782  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-riota 6239  df-ov 6281  df-oprab 6282  df-preset 15428  df-poset 15446  df-plt 15459  df-lub 15475  df-glb 15476  df-join 15477  df-meet 15478  df-p0 15540  df-lat 15547  df-clat 15609  df-oposet 34624  df-ol 34626  df-oml 34627  df-covers 34714  df-ats 34715  df-atl 34746  df-cvlat 34770  df-hlat 34799  df-llines 34945  df-lplanes 34946
This theorem is referenced by:  dalemdea  35109
  Copyright terms: Public domain W3C validator