Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem13 Structured version   Unicode version

Theorem dalem13 32706
Description: Lemma for dalem14 32707. (Contributed by NM, 21-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem13.o  |-  O  =  ( LPlanes `  K )
dalem13.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem13.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem13.w  |-  W  =  ( Y  .\/  C
)
Assertion
Ref Expression
dalem13  |-  ( (
ph  /\  Y  =/=  Z )  ->  ( Y  .\/  Z )  =  W )

Proof of Theorem dalem13
StepHypRef Expression
1 dalema.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkehl 32653 . . 3  |-  ( ph  ->  K  e.  HL )
32adantr 465 . 2  |-  ( (
ph  /\  Y  =/=  Z )  ->  K  e.  HL )
41dalemyeo 32662 . . 3  |-  ( ph  ->  Y  e.  O )
54adantr 465 . 2  |-  ( (
ph  /\  Y  =/=  Z )  ->  Y  e.  O )
61dalemzeo 32663 . . 3  |-  ( ph  ->  Z  e.  O )
76adantr 465 . 2  |-  ( (
ph  /\  Y  =/=  Z )  ->  Z  e.  O )
8 dalemc.l . . 3  |-  .<_  =  ( le `  K )
9 dalemc.j . . 3  |-  .\/  =  ( join `  K )
10 dalemc.a . . 3  |-  A  =  ( Atoms `  K )
11 dalem13.o . . 3  |-  O  =  ( LPlanes `  K )
12 eqid 2404 . . 3  |-  ( LVols `  K )  =  (
LVols `  K )
13 dalem13.y . . 3  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
14 dalem13.z . . 3  |-  Z  =  ( ( S  .\/  T )  .\/  U )
15 dalem13.w . . 3  |-  W  =  ( Y  .\/  C
)
161, 8, 9, 10, 11, 12, 13, 14, 15dalem9 32702 . 2  |-  ( (
ph  /\  Y  =/=  Z )  ->  W  e.  ( LVols `  K )
)
171dalemkelat 32654 . . . . 5  |-  ( ph  ->  K  e.  Lat )
181, 11dalemyeb 32679 . . . . 5  |-  ( ph  ->  Y  e.  ( Base `  K ) )
191, 10dalemceb 32668 . . . . 5  |-  ( ph  ->  C  e.  ( Base `  K ) )
20 eqid 2404 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2120, 8, 9latlej1 16016 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  ( Base `  K )  /\  C  e.  ( Base `  K
) )  ->  Y  .<_  ( Y  .\/  C
) )
2217, 18, 19, 21syl3anc 1232 . . . 4  |-  ( ph  ->  Y  .<_  ( Y  .\/  C ) )
2322, 15syl6breqr 4437 . . 3  |-  ( ph  ->  Y  .<_  W )
2423adantr 465 . 2  |-  ( (
ph  /\  Y  =/=  Z )  ->  Y  .<_  W )
251, 8, 9, 10, 11, 13, 14, 15dalem8 32700 . . 3  |-  ( ph  ->  Z  .<_  W )
2625adantr 465 . 2  |-  ( (
ph  /\  Y  =/=  Z )  ->  Z  .<_  W )
27 simpr 461 . 2  |-  ( (
ph  /\  Y  =/=  Z )  ->  Y  =/=  Z )
288, 9, 11, 122lplnj 32650 . 2  |-  ( ( K  e.  HL  /\  ( Y  e.  O  /\  Z  e.  O  /\  W  e.  ( LVols `  K ) )  /\  ( Y  .<_  W  /\  Z  .<_  W  /\  Y  =/=  Z ) )  ->  ( Y  .\/  Z )  =  W )
293, 5, 7, 16, 24, 26, 27, 28syl133anc 1255 1  |-  ( (
ph  /\  Y  =/=  Z )  ->  ( Y  .\/  Z )  =  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   class class class wbr 4397   ` cfv 5571  (class class class)co 6280   Basecbs 14843   lecple 14918   joincjn 15899   Latclat 16001   Atomscatm 32294   HLchlt 32381   LPlanesclpl 32522   LVolsclvol 32523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-preset 15883  df-poset 15901  df-plt 15914  df-lub 15930  df-glb 15931  df-join 15932  df-meet 15933  df-p0 15995  df-lat 16002  df-clat 16064  df-oposet 32207  df-ol 32209  df-oml 32210  df-covers 32297  df-ats 32298  df-atl 32329  df-cvlat 32353  df-hlat 32382  df-llines 32528  df-lplanes 32529  df-lvols 32530
This theorem is referenced by:  dalem14  32707
  Copyright terms: Public domain W3C validator