Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem10 Structured version   Visualization version   Unicode version

Theorem dalem10 33282
Description: Lemma for dath 33345. Atom  D belongs to the axis of perspectivity  X. (Contributed by NM, 19-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem10.m  |-  ./\  =  ( meet `  K )
dalem10.o  |-  O  =  ( LPlanes `  K )
dalem10.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem10.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem10.x  |-  X  =  ( Y  ./\  Z
)
dalem10.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
Assertion
Ref Expression
dalem10  |-  ( ph  ->  D  .<_  X )

Proof of Theorem dalem10
StepHypRef Expression
1 dalema.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkelat 33233 . . . 4  |-  ( ph  ->  K  e.  Lat )
3 dalemc.j . . . . 5  |-  .\/  =  ( join `  K )
4 dalemc.a . . . . 5  |-  A  =  ( Atoms `  K )
51, 3, 4dalempjqeb 33254 . . . 4  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
61, 4dalemreb 33250 . . . 4  |-  ( ph  ->  R  e.  ( Base `  K ) )
7 eqid 2461 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
8 dalemc.l . . . . 5  |-  .<_  =  ( le `  K )
97, 8, 3latlej1 16354 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
)  ->  ( P  .\/  Q )  .<_  ( ( P  .\/  Q ) 
.\/  R ) )
102, 5, 6, 9syl3anc 1276 . . 3  |-  ( ph  ->  ( P  .\/  Q
)  .<_  ( ( P 
.\/  Q )  .\/  R ) )
111, 3, 4dalemsjteb 33255 . . . 4  |-  ( ph  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
121, 4dalemueb 33253 . . . 4  |-  ( ph  ->  U  e.  ( Base `  K ) )
137, 8, 3latlej1 16354 . . . 4  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  ( Base `  K
)  /\  U  e.  ( Base `  K )
)  ->  ( S  .\/  T )  .<_  ( ( S  .\/  T ) 
.\/  U ) )
142, 11, 12, 13syl3anc 1276 . . 3  |-  ( ph  ->  ( S  .\/  T
)  .<_  ( ( S 
.\/  T )  .\/  U ) )
15 dalem10.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
16 dalem10.o . . . . . 6  |-  O  =  ( LPlanes `  K )
171, 16dalemyeb 33258 . . . . 5  |-  ( ph  ->  Y  e.  ( Base `  K ) )
1815, 17syl5eqelr 2544 . . . 4  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  R )  e.  ( Base `  K
) )
19 dalem10.z . . . . 5  |-  Z  =  ( ( S  .\/  T )  .\/  U )
201dalemzeo 33242 . . . . . 6  |-  ( ph  ->  Z  e.  O )
217, 16lplnbase 33143 . . . . . 6  |-  ( Z  e.  O  ->  Z  e.  ( Base `  K
) )
2220, 21syl 17 . . . . 5  |-  ( ph  ->  Z  e.  ( Base `  K ) )
2319, 22syl5eqelr 2544 . . . 4  |-  ( ph  ->  ( ( S  .\/  T )  .\/  U )  e.  ( Base `  K
) )
24 dalem10.m . . . . 5  |-  ./\  =  ( meet `  K )
257, 8, 24latmlem12 16377 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  .\/  R )  e.  ( Base `  K
) )  /\  (
( S  .\/  T
)  e.  ( Base `  K )  /\  (
( S  .\/  T
)  .\/  U )  e.  ( Base `  K
) ) )  -> 
( ( ( P 
.\/  Q )  .<_  ( ( P  .\/  Q )  .\/  R )  /\  ( S  .\/  T )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( P 
.\/  Q )  .\/  R )  ./\  ( ( S  .\/  T )  .\/  U ) ) ) )
262, 5, 18, 11, 23, 25syl122anc 1285 . . 3  |-  ( ph  ->  ( ( ( P 
.\/  Q )  .<_  ( ( P  .\/  Q )  .\/  R )  /\  ( S  .\/  T )  .<_  ( ( S  .\/  T )  .\/  U ) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( P 
.\/  Q )  .\/  R )  ./\  ( ( S  .\/  T )  .\/  U ) ) ) )
2710, 14, 26mp2and 690 . 2  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( P 
.\/  Q )  .\/  R )  ./\  ( ( S  .\/  T )  .\/  U ) ) )
28 dalem10.d . 2  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
29 dalem10.x . . 3  |-  X  =  ( Y  ./\  Z
)
3015, 19oveq12i 6326 . . 3  |-  ( Y 
./\  Z )  =  ( ( ( P 
.\/  Q )  .\/  R )  ./\  ( ( S  .\/  T )  .\/  U ) )
3129, 30eqtri 2483 . 2  |-  X  =  ( ( ( P 
.\/  Q )  .\/  R )  ./\  ( ( S  .\/  T )  .\/  U ) )
3227, 28, 313brtr4g 4448 1  |-  ( ph  ->  D  .<_  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897   class class class wbr 4415   ` cfv 5600  (class class class)co 6314   Basecbs 15169   lecple 15245   joincjn 16237   meetcmee 16238   Latclat 16339   Atomscatm 32873   HLchlt 32960   LPlanesclpl 33101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-reu 2755  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-riota 6276  df-ov 6317  df-oprab 6318  df-poset 16239  df-lub 16268  df-glb 16269  df-join 16270  df-meet 16271  df-lat 16340  df-ats 32877  df-atl 32908  df-cvlat 32932  df-hlat 32961  df-lplanes 33108
This theorem is referenced by:  dalem11  33283  dalem16  33288  dalem54  33335
  Copyright terms: Public domain W3C validator