Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem14 Structured version   Unicode version

Theorem dalawlem14 33525
Description: Lemma for dalaw 33527. Combine dalawlem10 33521 and dalawlem13 33524. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
dalawlem2.o  |-  O  =  ( LPlanes `  K )
Assertion
Ref Expression
dalawlem14  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( P  .\/  Q ) 
.\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )

Proof of Theorem dalawlem14
StepHypRef Expression
1 ianor 488 . . . 4  |-  ( -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  <->  ( -.  (
( P  .\/  Q
)  .\/  R )  e.  O  \/  -.  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) ) )
2 dalawlem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
3 dalawlem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
4 dalawlem.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
5 dalawlem.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
6 dalawlem2.o . . . . . . . 8  |-  O  =  ( LPlanes `  K )
72, 3, 4, 5, 6dalawlem13 33524 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
873expib 1190 . . . . . 6  |-  ( ( K  e.  HL  /\  -.  ( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
983exp 1186 . . . . 5  |-  ( K  e.  HL  ->  ( -.  ( ( P  .\/  Q )  .\/  R )  e.  O  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
102, 3, 4, 5dalawlem10 33521 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( -.  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
11103expib 1190 . . . . . 6  |-  ( ( K  e.  HL  /\  -.  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  -> 
( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) )
12113exp 1186 . . . . 5  |-  ( K  e.  HL  ->  ( -.  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) )  ->  ( ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U )  -> 
( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
139, 12jaod 380 . . . 4  |-  ( K  e.  HL  ->  (
( -.  ( ( P  .\/  Q ) 
.\/  R )  e.  O  \/  -.  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
141, 13syl5bi 217 . . 3  |-  ( K  e.  HL  ->  ( -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  ->  ( (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
15143imp 1181 . 2  |-  ( ( K  e.  HL  /\  -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
16153impib 1185 1  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( P  .\/  Q ) 
.\/  R )  e.  O  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4290   ` cfv 5416  (class class class)co 6089   lecple 14243   joincjn 15112   meetcmee 15113   Atomscatm 32905   HLchlt 32992   LPlanesclpl 33133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-1st 6575  df-2nd 6576  df-poset 15114  df-plt 15126  df-lub 15142  df-glb 15143  df-join 15144  df-meet 15145  df-p0 15207  df-lat 15214  df-clat 15276  df-oposet 32818  df-ol 32820  df-oml 32821  df-covers 32908  df-ats 32909  df-atl 32940  df-cvlat 32964  df-hlat 32993  df-llines 33139  df-lplanes 33140  df-psubsp 33144  df-pmap 33145  df-padd 33437
This theorem is referenced by:  dalawlem15  33526  dalaw  33527
  Copyright terms: Public domain W3C validator