Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem13 Structured version   Visualization version   Unicode version

Theorem dalawlem13 33442
Description: Lemma for dalaw 33445. Special case to eliminate the requirement  ( ( P  .\/  Q )  .\/  R )  e.  O in dalawlem1 33430. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
dalawlem2.o  |-  O  =  ( LPlanes `  K )
Assertion
Ref Expression
dalawlem13  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )

Proof of Theorem dalawlem13
StepHypRef Expression
1 simp11 1037 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  K  e.  HL )
2 simp12 1038 . . 3  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  -.  (
( P  .\/  Q
)  .\/  R )  e.  O )
3 simp22 1041 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  Q  e.  A )
4 simp23 1042 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  R  e.  A )
5 simp21 1040 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  P  e.  A )
6 dalawlem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
7 dalawlem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
8 dalawlem.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
9 dalawlem2.o . . . . . . . 8  |-  O  =  ( LPlanes `  K )
106, 7, 8, 9islpln2a 33107 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
) )  ->  (
( ( Q  .\/  R )  .\/  P )  e.  O  <->  ( Q  =/=  R  /\  -.  P  .<_  ( Q  .\/  R
) ) ) )
111, 3, 4, 5, 10syl13anc 1269 . . . . . 6  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( Q  .\/  R
)  .\/  P )  e.  O  <->  ( Q  =/= 
R  /\  -.  P  .<_  ( Q  .\/  R
) ) ) )
12 df-ne 2623 . . . . . . . 8  |-  ( Q  =/=  R  <->  -.  Q  =  R )
1312anbi1i 700 . . . . . . 7  |-  ( ( Q  =/=  R  /\  -.  P  .<_  ( Q 
.\/  R ) )  <-> 
( -.  Q  =  R  /\  -.  P  .<_  ( Q  .\/  R
) ) )
14 pm4.56 498 . . . . . . 7  |-  ( ( -.  Q  =  R  /\  -.  P  .<_  ( Q  .\/  R ) )  <->  -.  ( Q  =  R  \/  P  .<_  ( Q  .\/  R
) ) )
1513, 14bitri 253 . . . . . 6  |-  ( ( Q  =/=  R  /\  -.  P  .<_  ( Q 
.\/  R ) )  <->  -.  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) ) )
1611, 15syl6rbb 266 . . . . 5  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  <-> 
( ( Q  .\/  R )  .\/  P )  e.  O ) )
177, 8hlatjrot 32932 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
181, 3, 4, 5, 17syl13anc 1269 . . . . . 6  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( Q  .\/  R )  .\/  P )  =  ( ( P  .\/  Q ) 
.\/  R ) )
1918eleq1d 2512 . . . . 5  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( Q  .\/  R
)  .\/  P )  e.  O  <->  ( ( P 
.\/  Q )  .\/  R )  e.  O ) )
2016, 19bitrd 257 . . . 4  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  <-> 
( ( P  .\/  Q )  .\/  R )  e.  O ) )
2120con1bid 332 . . 3  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( ( P  .\/  Q )  .\/  R )  e.  O  <->  ( Q  =  R  \/  P  .<_  ( Q  .\/  R
) ) ) )
222, 21mpbid 214 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( Q  =  R  \/  P  .<_  ( Q  .\/  R
) ) )
23 simp13 1039 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )
24 simp2 1008 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )
25 simp3 1009 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )
26 dalawlem.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
276, 7, 26, 8dalawlem12 33441 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  Q  =  R  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
28273expib 1210 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  =  R  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
29283exp 1206 . . . . 5  |-  ( K  e.  HL  ->  ( Q  =  R  ->  ( ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
306, 7, 26, 8dalawlem11 33440 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
31303expib 1210 . . . . . 6  |-  ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
32313exp 1206 . . . . 5  |-  ( K  e.  HL  ->  ( P  .<_  ( Q  .\/  R )  ->  ( (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
3329, 32jaod 382 . . . 4  |-  ( K  e.  HL  ->  (
( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  ->  ( ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U )  -> 
( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
34333imp 1201 . . 3  |-  ( ( K  e.  HL  /\  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  -> 
( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) )
35343impib 1205 . 2  |-  ( ( ( K  e.  HL  /\  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
361, 22, 23, 24, 25, 35syl311anc 1281 1  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   class class class wbr 4401   ` cfv 5581  (class class class)co 6288   lecple 15190   joincjn 16182   meetcmee 16183   Atomscatm 32823   HLchlt 32910   LPlanesclpl 33051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-iun 4279  df-iin 4280  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-1st 6790  df-2nd 6791  df-preset 16166  df-poset 16184  df-plt 16197  df-lub 16213  df-glb 16214  df-join 16215  df-meet 16216  df-p0 16278  df-lat 16285  df-clat 16347  df-oposet 32736  df-ol 32738  df-oml 32739  df-covers 32826  df-ats 32827  df-atl 32858  df-cvlat 32882  df-hlat 32911  df-llines 33057  df-lplanes 33058  df-psubsp 33062  df-pmap 33063  df-padd 33355
This theorem is referenced by:  dalawlem14  33443
  Copyright terms: Public domain W3C validator