Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem13 Structured version   Unicode version

Theorem dalawlem13 33539
Description: Lemma for dalaw 33542. Special case to eliminate the requirement  ( ( P  .\/  Q )  .\/  R )  e.  O in dalawlem1 33527. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
dalawlem2.o  |-  O  =  ( LPlanes `  K )
Assertion
Ref Expression
dalawlem13  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )

Proof of Theorem dalawlem13
StepHypRef Expression
1 simp11 1018 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  K  e.  HL )
2 simp12 1019 . . 3  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  -.  (
( P  .\/  Q
)  .\/  R )  e.  O )
3 simp22 1022 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  Q  e.  A )
4 simp23 1023 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  R  e.  A )
5 simp21 1021 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  P  e.  A )
6 dalawlem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
7 dalawlem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
8 dalawlem.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
9 dalawlem2.o . . . . . . . 8  |-  O  =  ( LPlanes `  K )
106, 7, 8, 9islpln2a 33204 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
) )  ->  (
( ( Q  .\/  R )  .\/  P )  e.  O  <->  ( Q  =/=  R  /\  -.  P  .<_  ( Q  .\/  R
) ) ) )
111, 3, 4, 5, 10syl13anc 1220 . . . . . 6  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( Q  .\/  R
)  .\/  P )  e.  O  <->  ( Q  =/= 
R  /\  -.  P  .<_  ( Q  .\/  R
) ) ) )
12 df-ne 2620 . . . . . . . 8  |-  ( Q  =/=  R  <->  -.  Q  =  R )
1312anbi1i 695 . . . . . . 7  |-  ( ( Q  =/=  R  /\  -.  P  .<_  ( Q 
.\/  R ) )  <-> 
( -.  Q  =  R  /\  -.  P  .<_  ( Q  .\/  R
) ) )
14 pm4.56 495 . . . . . . 7  |-  ( ( -.  Q  =  R  /\  -.  P  .<_  ( Q  .\/  R ) )  <->  -.  ( Q  =  R  \/  P  .<_  ( Q  .\/  R
) ) )
1513, 14bitri 249 . . . . . 6  |-  ( ( Q  =/=  R  /\  -.  P  .<_  ( Q 
.\/  R ) )  <->  -.  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) ) )
1611, 15syl6rbb 262 . . . . 5  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  <-> 
( ( Q  .\/  R )  .\/  P )  e.  O ) )
177, 8hlatjrot 33029 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
181, 3, 4, 5, 17syl13anc 1220 . . . . . 6  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( Q  .\/  R )  .\/  P )  =  ( ( P  .\/  Q ) 
.\/  R ) )
1918eleq1d 2509 . . . . 5  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( Q  .\/  R
)  .\/  P )  e.  O  <->  ( ( P 
.\/  Q )  .\/  R )  e.  O ) )
2016, 19bitrd 253 . . . 4  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  <-> 
( ( P  .\/  Q )  .\/  R )  e.  O ) )
2120con1bid 330 . . 3  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( ( P  .\/  Q )  .\/  R )  e.  O  <->  ( Q  =  R  \/  P  .<_  ( Q  .\/  R
) ) ) )
222, 21mpbid 210 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( Q  =  R  \/  P  .<_  ( Q  .\/  R
) ) )
23 simp13 1020 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )
24 simp2 989 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )
25 simp3 990 . 2  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )
26 dalawlem.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
276, 7, 26, 8dalawlem12 33538 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  Q  =  R  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
28273expib 1190 . . . . . 6  |-  ( ( K  e.  HL  /\  Q  =  R  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
29283exp 1186 . . . . 5  |-  ( K  e.  HL  ->  ( Q  =  R  ->  ( ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
306, 7, 26, 8dalawlem11 33537 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
31303expib 1190 . . . . . 6  |-  ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
32313exp 1186 . . . . 5  |-  ( K  e.  HL  ->  ( P  .<_  ( Q  .\/  R )  ->  ( (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
3329, 32jaod 380 . . . 4  |-  ( K  e.  HL  ->  (
( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  ->  ( ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U )  -> 
( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
34333imp 1181 . . 3  |-  ( ( K  e.  HL  /\  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  -> 
( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) )
35343impib 1185 . 2  |-  ( ( ( K  e.  HL  /\  ( Q  =  R  \/  P  .<_  ( Q 
.\/  R ) )  /\  ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
361, 22, 23, 24, 25, 35syl311anc 1232 1  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618   class class class wbr 4304   ` cfv 5430  (class class class)co 6103   lecple 14257   joincjn 15126   meetcmee 15127   Atomscatm 32920   HLchlt 33007   LPlanesclpl 33148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-1st 6589  df-2nd 6590  df-poset 15128  df-plt 15140  df-lub 15156  df-glb 15157  df-join 15158  df-meet 15159  df-p0 15221  df-lat 15228  df-clat 15290  df-oposet 32833  df-ol 32835  df-oml 32836  df-covers 32923  df-ats 32924  df-atl 32955  df-cvlat 32979  df-hlat 33008  df-llines 33154  df-lplanes 33155  df-psubsp 33159  df-pmap 33160  df-padd 33452
This theorem is referenced by:  dalawlem14  33540
  Copyright terms: Public domain W3C validator