Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem11 Unicode version

Theorem dalawlem11 30363
Description: Lemma for dalaw 30368. First part of dalawlem13 30365. (Contributed by NM, 17-Sep-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalawlem11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )

Proof of Theorem dalawlem11
StepHypRef Expression
1 eqid 2404 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 dalawlem.l . . . 4  |-  .<_  =  ( le `  K )
3 simp11 987 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  K  e.  HL )
4 hllat 29846 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  K  e.  Lat )
6 simp21 990 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  P  e.  A )
7 simp22 991 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  Q  e.  A )
8 dalawlem.j . . . . . . 7  |-  .\/  =  ( join `  K )
9 dalawlem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
101, 8, 9hlatjcl 29849 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
113, 6, 7, 10syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
12 simp31 993 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  S  e.  A )
13 simp32 994 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  T  e.  A )
141, 8, 9hlatjcl 29849 . . . . . 6  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
153, 12, 13, 14syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( S  .\/  T )  e.  (
Base `  K )
)
16 dalawlem.m . . . . . 6  |-  ./\  =  ( meet `  K )
171, 16latmcl 14435 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  e.  ( Base `  K ) )
185, 11, 15, 17syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  e.  ( Base `  K ) )
19 simp23 992 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  R  e.  A )
201, 8, 9hlatjcl 29849 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
213, 7, 19, 20syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( Q  .\/  R )  e.  (
Base `  K )
)
221, 2, 16latmle1 14460 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( P  .\/  Q ) )
235, 11, 15, 22syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( P  .\/  Q ) )
24 simp12 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  P  .<_  ( Q  .\/  R ) )
251, 9atbase 29772 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
267, 25syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  Q  e.  ( Base `  K )
)
271, 9atbase 29772 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
2819, 27syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  R  e.  ( Base `  K )
)
291, 2, 8latlej1 14444 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  Q  .<_  ( Q  .\/  R
) )
305, 26, 28, 29syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  Q  .<_  ( Q  .\/  R ) )
311, 9atbase 29772 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
326, 31syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  P  e.  ( Base `  K )
)
331, 2, 8latjle12 14446 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( Q  .\/  R )  /\  Q  .<_  ( Q 
.\/  R ) )  <-> 
( P  .\/  Q
)  .<_  ( Q  .\/  R ) ) )
345, 32, 26, 21, 33syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .<_  ( Q  .\/  R )  /\  Q  .<_  ( Q  .\/  R ) )  <->  ( P  .\/  Q )  .<_  ( Q  .\/  R ) ) )
3524, 30, 34mpbi2and 888 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  Q )  .<_  ( Q 
.\/  R ) )
361, 2, 5, 18, 11, 21, 23, 35lattrd 14442 . . 3  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( Q  .\/  R ) )
371, 9atbase 29772 . . . . . . . 8  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
3813, 37syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  T  e.  ( Base `  K )
)
391, 8latjcl 14434 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K ) )
405, 11, 38, 39syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K ) )
411, 16latmcl 14435 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
)  ->  ( (
( P  .\/  Q
)  .\/  T )  ./\  ( S  .\/  T
) )  e.  (
Base `  K )
)
425, 40, 15, 41syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( P  .\/  Q
)  .\/  T )  ./\  ( S  .\/  T
) )  e.  (
Base `  K )
)
431, 8, 9hlatjcl 29849 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  R  e.  A  /\  P  e.  A )  ->  ( R  .\/  P
)  e.  ( Base `  K ) )
443, 19, 6, 43syl3anc 1184 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( R  .\/  P )  e.  (
Base `  K )
)
45 simp33 995 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  U  e.  A )
461, 8, 9hlatjcl 29849 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  U  e.  A  /\  S  e.  A )  ->  ( U  .\/  S
)  e.  ( Base `  K ) )
473, 45, 12, 46syl3anc 1184 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( U  .\/  S )  e.  (
Base `  K )
)
481, 16latmcl 14435 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( R  .\/  P )  e.  ( Base `  K
)  /\  ( U  .\/  S )  e.  (
Base `  K )
)  ->  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K ) )
495, 44, 47, 48syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K ) )
501, 9atbase 29772 . . . . . . . 8  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
5145, 50syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  U  e.  ( Base `  K )
)
521, 8latjcl 14434 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K
)  /\  U  e.  ( Base `  K )
)  ->  ( (
( R  .\/  P
)  ./\  ( U  .\/  S ) )  .\/  U )  e.  ( Base `  K ) )
535, 49, 51, 52syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( R  .\/  P
)  ./\  ( U  .\/  S ) )  .\/  U )  e.  ( Base `  K ) )
541, 8latjcl 14434 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( R 
.\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( (
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  .\/  T )  e.  ( Base `  K
) )
555, 53, 38, 54syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  .\/  T )  e.  ( Base `  K
) )
561, 2, 8latlej1 14444 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( P  .\/  Q )  .<_  ( ( P  .\/  Q ) 
.\/  T ) )
575, 11, 38, 56syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  Q )  .<_  ( ( P  .\/  Q ) 
.\/  T ) )
581, 2, 16latmlem1 14465 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  .\/  T )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
) )  ->  (
( P  .\/  Q
)  .<_  ( ( P 
.\/  Q )  .\/  T )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( P  .\/  Q
)  .\/  T )  ./\  ( S  .\/  T
) ) ) )
595, 11, 40, 15, 58syl13anc 1186 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  .<_  ( ( P  .\/  Q )  .\/  T )  ->  ( ( P 
.\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( P  .\/  Q
)  .\/  T )  ./\  ( S  .\/  T
) ) ) )
6057, 59mpd 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( P  .\/  Q
)  .\/  T )  ./\  ( S  .\/  T
) ) )
611, 2, 8latlej2 14445 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  T  .<_  ( ( P  .\/  Q
)  .\/  T )
)
625, 11, 38, 61syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  T  .<_  ( ( P  .\/  Q
)  .\/  T )
)
631, 2, 8, 16, 9atmod2i2 30344 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  /\  T  .<_  ( ( P  .\/  Q
)  .\/  T )
)  ->  ( (
( ( P  .\/  Q )  .\/  T ) 
./\  S )  .\/  T )  =  ( ( ( P  .\/  Q
)  .\/  T )  ./\  ( S  .\/  T
) ) )
643, 12, 40, 38, 62, 63syl131anc 1197 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( ( P  .\/  Q )  .\/  T ) 
./\  S )  .\/  T )  =  ( ( ( P  .\/  Q
)  .\/  T )  ./\  ( S  .\/  T
) ) )
651, 8, 9hlatjcl 29849 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  ->  ( Q  .\/  T
)  e.  ( Base `  K ) )
663, 7, 13, 65syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( Q  .\/  T )  e.  (
Base `  K )
)
671, 8, 9hlatjcl 29849 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
683, 6, 12, 67syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  S )  e.  (
Base `  K )
)
691, 16latmcom 14459 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  ( Q  .\/  T )  e.  ( Base `  K
)  /\  ( P  .\/  S )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  =  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) ) )
705, 66, 68, 69syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  =  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) ) )
71 simp13 989 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )
7270, 71eqbrtrd 4192 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  .<_  ( R  .\/  U ) )
731, 16latmcl 14435 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  ( Q  .\/  T )  e.  ( Base `  K
)  /\  ( P  .\/  S )  e.  (
Base `  K )
)  ->  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  e.  ( Base `  K ) )
745, 66, 68, 73syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  e.  ( Base `  K ) )
751, 8, 9hlatjcl 29849 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  .\/  U
)  e.  ( Base `  K ) )
763, 19, 45, 75syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( R  .\/  U )  e.  (
Base `  K )
)
771, 2, 8latjlej2 14450 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( ( ( Q 
.\/  T )  ./\  ( P  .\/  S ) )  e.  ( Base `  K )  /\  ( R  .\/  U )  e.  ( Base `  K
)  /\  P  e.  ( Base `  K )
) )  ->  (
( ( Q  .\/  T )  ./\  ( P  .\/  S ) )  .<_  ( R  .\/  U )  ->  ( P  .\/  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) ) ) 
.<_  ( P  .\/  ( R  .\/  U ) ) ) )
785, 74, 76, 32, 77syl13anc 1186 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( Q  .\/  T
)  ./\  ( P  .\/  S ) )  .<_  ( R  .\/  U )  ->  ( P  .\/  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) ) ) 
.<_  ( P  .\/  ( R  .\/  U ) ) ) )
7972, 78mpd 15 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) ) ) 
.<_  ( P  .\/  ( R  .\/  U ) ) )
801, 9atbase 29772 . . . . . . . . . . . . 13  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
8112, 80syl 16 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  S  e.  ( Base `  K )
)
821, 2, 8latlej1 14444 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) )  ->  P  .<_  ( P  .\/  S
) )
835, 32, 81, 82syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  P  .<_  ( P  .\/  S ) )
841, 2, 8, 16, 9atmod1i1 30339 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( Q  .\/  T
)  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  S
) )  ->  ( P  .\/  ( ( Q 
.\/  T )  ./\  ( P  .\/  S ) ) )  =  ( ( P  .\/  ( Q  .\/  T ) ) 
./\  ( P  .\/  S ) ) )
853, 6, 66, 68, 83, 84syl131anc 1197 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) ) )  =  ( ( P 
.\/  ( Q  .\/  T ) )  ./\  ( P  .\/  S ) ) )
868, 9hlatjass 29852 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  R  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  R
)  .\/  U )  =  ( P  .\/  ( R  .\/  U ) ) )
873, 6, 19, 45, 86syl13anc 1186 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  R )  .\/  U )  =  ( P 
.\/  ( R  .\/  U ) ) )
888, 9hlatjcom 29850 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  =  ( R 
.\/  P ) )
893, 6, 19, 88syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  R )  =  ( R  .\/  P ) )
9089oveq1d 6055 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  R )  .\/  U )  =  ( ( R  .\/  P ) 
.\/  U ) )
9187, 90eqtr3d 2438 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  ( R  .\/  U
) )  =  ( ( R  .\/  P
)  .\/  U )
)
9279, 85, 913brtr3d 4201 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  ( Q  .\/  T ) )  ./\  ( P  .\/  S ) ) 
.<_  ( ( R  .\/  P )  .\/  U ) )
931, 2, 8latlej2 14445 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  U  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) )  ->  S  .<_  ( U  .\/  S
) )
945, 51, 81, 93syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  S  .<_  ( U  .\/  S ) )
951, 8latjcl 14434 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( Q  .\/  T )  e.  ( Base `  K
) )  ->  ( P  .\/  ( Q  .\/  T ) )  e.  (
Base `  K )
)
965, 32, 66, 95syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  ( Q  .\/  T
) )  e.  (
Base `  K )
)
971, 16latmcl 14435 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( Q 
.\/  T ) )  e.  ( Base `  K
)  /\  ( P  .\/  S )  e.  (
Base `  K )
)  ->  ( ( P  .\/  ( Q  .\/  T ) )  ./\  ( P  .\/  S ) )  e.  ( Base `  K
) )
985, 96, 68, 97syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  ( Q  .\/  T ) )  ./\  ( P  .\/  S ) )  e.  ( Base `  K
) )
991, 8latjcl 14434 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( R  .\/  P )  e.  ( Base `  K
)  /\  U  e.  ( Base `  K )
)  ->  ( ( R  .\/  P )  .\/  U )  e.  ( Base `  K ) )
1005, 44, 51, 99syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( R  .\/  P )  .\/  U )  e.  ( Base `  K ) )
1011, 2, 16latmlem12 14467 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( ( ( P 
.\/  ( Q  .\/  T ) )  ./\  ( P  .\/  S ) )  e.  ( Base `  K
)  /\  ( ( R  .\/  P )  .\/  U )  e.  ( Base `  K ) )  /\  ( S  e.  ( Base `  K )  /\  ( U  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( ( ( P  .\/  ( Q 
.\/  T ) ) 
./\  ( P  .\/  S ) )  .<_  ( ( R  .\/  P ) 
.\/  U )  /\  S  .<_  ( U  .\/  S ) )  ->  (
( ( P  .\/  ( Q  .\/  T ) )  ./\  ( P  .\/  S ) )  ./\  S )  .<_  ( (
( R  .\/  P
)  .\/  U )  ./\  ( U  .\/  S
) ) ) )
1025, 98, 100, 81, 47, 101syl122anc 1193 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( ( P  .\/  ( Q  .\/  T ) )  ./\  ( P  .\/  S ) )  .<_  ( ( R  .\/  P )  .\/  U )  /\  S  .<_  ( U 
.\/  S ) )  ->  ( ( ( P  .\/  ( Q 
.\/  T ) ) 
./\  ( P  .\/  S ) )  ./\  S
)  .<_  ( ( ( R  .\/  P ) 
.\/  U )  ./\  ( U  .\/  S ) ) ) )
10392, 94, 102mp2and 661 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( P  .\/  ( Q  .\/  T ) ) 
./\  ( P  .\/  S ) )  ./\  S
)  .<_  ( ( ( R  .\/  P ) 
.\/  U )  ./\  ( U  .\/  S ) ) )
104 hlol 29844 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
1053, 104syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  K  e.  OL )
1061, 16latmassOLD 29712 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( ( P  .\/  ( Q  .\/  T ) )  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  ( Q  .\/  T ) )  ./\  ( P  .\/  S ) )  ./\  S )  =  ( ( P  .\/  ( Q 
.\/  T ) ) 
./\  ( ( P 
.\/  S )  ./\  S ) ) )
107105, 96, 68, 81, 106syl13anc 1186 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( P  .\/  ( Q  .\/  T ) ) 
./\  ( P  .\/  S ) )  ./\  S
)  =  ( ( P  .\/  ( Q 
.\/  T ) ) 
./\  ( ( P 
.\/  S )  ./\  S ) ) )
1088, 9hlatjass 29852 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  T  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  T )  =  ( P  .\/  ( Q  .\/  T ) ) )
1093, 6, 7, 13, 108syl13anc 1186 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  .\/  T )  =  ( P 
.\/  ( Q  .\/  T ) ) )
110109eqcomd 2409 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  .\/  ( Q  .\/  T
) )  =  ( ( P  .\/  Q
)  .\/  T )
)
1111, 2, 8latlej2 14445 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) )  ->  S  .<_  ( P  .\/  S
) )
1125, 32, 81, 111syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  S  .<_  ( P  .\/  S ) )
1131, 2, 16latleeqm2 14464 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  ( P  .\/  S )  e.  ( Base `  K
) )  ->  ( S  .<_  ( P  .\/  S )  <->  ( ( P 
.\/  S )  ./\  S )  =  S ) )
1145, 81, 68, 113syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( S  .<_  ( P  .\/  S
)  <->  ( ( P 
.\/  S )  ./\  S )  =  S ) )
115112, 114mpbid 202 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  S )  ./\  S )  =  S )
116110, 115oveq12d 6058 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  ( Q  .\/  T ) )  ./\  (
( P  .\/  S
)  ./\  S )
)  =  ( ( ( P  .\/  Q
)  .\/  T )  ./\  S ) )
117107, 116eqtr2d 2437 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( P  .\/  Q
)  .\/  T )  ./\  S )  =  ( ( ( P  .\/  ( Q  .\/  T ) )  ./\  ( P  .\/  S ) )  ./\  S ) )
1181, 2, 8latlej1 14444 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  U  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) )  ->  U  .<_  ( U  .\/  S
) )
1195, 51, 81, 118syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  U  .<_  ( U  .\/  S ) )
1201, 2, 8, 16, 9atmod4i1 30348 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( U  e.  A  /\  ( R  .\/  P
)  e.  ( Base `  K )  /\  ( U  .\/  S )  e.  ( Base `  K
) )  /\  U  .<_  ( U  .\/  S
) )  ->  (
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  =  ( ( ( R  .\/  P
)  .\/  U )  ./\  ( U  .\/  S
) ) )
1213, 45, 44, 47, 119, 120syl131anc 1197 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( R  .\/  P
)  ./\  ( U  .\/  S ) )  .\/  U )  =  ( ( ( R  .\/  P
)  .\/  U )  ./\  ( U  .\/  S
) ) )
122103, 117, 1213brtr4d 4202 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( P  .\/  Q
)  .\/  T )  ./\  S )  .<_  ( ( ( R  .\/  P
)  ./\  ( U  .\/  S ) )  .\/  U ) )
1231, 16latmcl 14435 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( (
( P  .\/  Q
)  .\/  T )  ./\  S )  e.  (
Base `  K )
)
1245, 40, 81, 123syl3anc 1184 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( P  .\/  Q
)  .\/  T )  ./\  S )  e.  (
Base `  K )
)
1251, 2, 8latjlej1 14449 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  e.  ( Base `  K )  /\  (
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  e.  ( Base `  K )  /\  T  e.  ( Base `  K
) ) )  -> 
( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  .<_  ( (
( R  .\/  P
)  ./\  ( U  .\/  S ) )  .\/  U )  ->  ( (
( ( P  .\/  Q )  .\/  T ) 
./\  S )  .\/  T )  .<_  ( (
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  .\/  T ) ) )
1265, 124, 53, 38, 125syl13anc 1186 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( ( P  .\/  Q )  .\/  T ) 
./\  S )  .<_  ( ( ( R 
.\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  ->  ( ( ( ( P  .\/  Q
)  .\/  T )  ./\  S )  .\/  T
)  .<_  ( ( ( ( R  .\/  P
)  ./\  ( U  .\/  S ) )  .\/  U )  .\/  T ) ) )
127122, 126mpd 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( ( P  .\/  Q )  .\/  T ) 
./\  S )  .\/  T )  .<_  ( (
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  .\/  T ) )
12864, 127eqbrtrrd 4194 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( P  .\/  Q
)  .\/  T )  ./\  ( S  .\/  T
) )  .<_  ( ( ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  .\/  T ) )
1291, 2, 5, 18, 42, 55, 60, 128lattrd 14442 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  .\/  T ) )
1301, 8latj31 14483 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( ( R 
.\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K )  /\  U  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
) )  ->  (
( ( ( R 
.\/  P )  ./\  ( U  .\/  S ) )  .\/  U ) 
.\/  T )  =  ( ( T  .\/  U )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )
1315, 49, 51, 38, 130syl13anc 1186 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .\/  U )  .\/  T )  =  ( ( T 
.\/  U )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
132129, 131breqtrd 4196 . . 3  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( T  .\/  U )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
1331, 8, 9hlatjcl 29849 . . . . . 6  |-  ( ( K  e.  HL  /\  T  e.  A  /\  U  e.  A )  ->  ( T  .\/  U
)  e.  ( Base `  K ) )
1343, 13, 45, 133syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( T  .\/  U )  e.  (
Base `  K )
)
1351, 8latjcl 14434 . . . . 5  |-  ( ( K  e.  Lat  /\  ( T  .\/  U )  e.  ( Base `  K
)  /\  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  e.  ( Base `  K ) )  -> 
( ( T  .\/  U )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) )  e.  ( Base `  K
) )
1365, 134, 49, 135syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( T  .\/  U )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) )  e.  ( Base `  K
) )
1371, 2, 16latlem12 14462 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( ( P 
.\/  Q )  ./\  ( S  .\/  T ) )  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  ( ( T  .\/  U )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) )  e.  ( Base `  K
) ) )  -> 
( ( ( ( P  .\/  Q ) 
./\  ( S  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( T  .\/  U )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) )  <-> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( Q  .\/  R )  ./\  ( ( T  .\/  U )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) )
1385, 18, 21, 136, 137syl13anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( Q  .\/  R )  /\  ( ( P 
.\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( T  .\/  U )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )  <->  ( ( P 
.\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( Q  .\/  R )  ./\  ( ( T  .\/  U )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) )
13936, 132, 138mpbi2and 888 . 2  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( Q  .\/  R )  ./\  ( ( T  .\/  U )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
1401, 2, 16latmle1 14460 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  P )  e.  ( Base `  K
)  /\  ( U  .\/  S )  e.  (
Base `  K )
)  ->  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .<_  ( R  .\/  P ) )
1415, 44, 47, 140syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .<_  ( R  .\/  P ) )
1421, 2, 8latlej2 14445 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  R  .<_  ( Q  .\/  R
) )
1435, 26, 28, 142syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  R  .<_  ( Q  .\/  R ) )
1441, 2, 8latjle12 14446 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
) ) )  -> 
( ( R  .<_  ( Q  .\/  R )  /\  P  .<_  ( Q 
.\/  R ) )  <-> 
( R  .\/  P
)  .<_  ( Q  .\/  R ) ) )
1455, 28, 32, 21, 144syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( R  .<_  ( Q  .\/  R )  /\  P  .<_  ( Q  .\/  R ) )  <->  ( R  .\/  P )  .<_  ( Q  .\/  R ) ) )
146143, 24, 145mpbi2and 888 . . . 4  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( R  .\/  P )  .<_  ( Q 
.\/  R ) )
1471, 2, 5, 49, 44, 21, 141, 146lattrd 14442 . . 3  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .<_  ( Q  .\/  R ) )
1481, 2, 8, 16, 9llnmod2i2 30345 . . 3  |-  ( ( ( K  e.  HL  /\  ( Q  .\/  R
)  e.  ( Base `  K )  /\  (
( R  .\/  P
)  ./\  ( U  .\/  S ) )  e.  ( Base `  K
) )  /\  ( T  e.  A  /\  U  e.  A )  /\  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )  .<_  ( Q  .\/  R ) )  ->  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) )  =  ( ( Q 
.\/  R )  ./\  ( ( T  .\/  U )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
1493, 21, 49, 13, 45, 147, 148syl321anc 1206 . 2  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) )  =  ( ( Q 
.\/  R )  ./\  ( ( T  .\/  U )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
150139, 149breqtrrd 4198 1  |-  ( ( ( K  e.  HL  /\  P  .<_  ( Q  .\/  R )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   joincjn 14356   meetcmee 14357   Latclat 14429   OLcol 29657   Atomscatm 29746   HLchlt 29833
This theorem is referenced by:  dalawlem13  30365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-psubsp 29985  df-pmap 29986  df-padd 30278
  Copyright terms: Public domain W3C validator