Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalaw Structured version   Unicode version

Theorem dalaw 33363
Description: Desargues' law, derived from Desargues' theorem dath 33213 and with no conditions on the atoms. If triples  <. P ,  Q ,  R >. and  <. S ,  T ,  U >. are centrally perspective, i.e.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.)
Hypotheses
Ref Expression
dalaw.l  |-  .<_  =  ( le `  K )
dalaw.j  |-  .\/  =  ( join `  K )
dalaw.m  |-  ./\  =  ( meet `  K )
dalaw.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalaw  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )

Proof of Theorem dalaw
StepHypRef Expression
1 dalaw.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
2 dalaw.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
3 dalaw.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
4 dalaw.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
5 eqid 2423 . . . . . . . . 9  |-  ( LPlanes `  K )  =  (
LPlanes `  K )
61, 2, 3, 4, 5dalawlem14 33361 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
763expib 1208 . . . . . . 7  |-  ( ( K  e.  HL  /\  -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
873exp 1204 . . . . . 6  |-  ( K  e.  HL  ->  ( -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
91, 2, 3, 4, 5dalawlem15 33362 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( S  .\/  T ) 
.\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
1093expib 1208 . . . . . . 7  |-  ( ( K  e.  HL  /\  -.  ( ( ( S 
.\/  T )  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
11103exp 1204 . . . . . 6  |-  ( K  e.  HL  ->  ( -.  ( ( ( S 
.\/  T )  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
12 simp11 1035 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  K  e.  HL )
13 simp2 1006 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )
14 simp3 1007 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )
15 simp2ll 1072 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  e.  ( LPlanes `  K ) )
16153ad2ant1 1026 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  .\/  R )  e.  ( LPlanes `  K ) )
17 simp2rl 1074 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K ) )
18173ad2ant1 1026 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K ) )
19 simp2lr 1073 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )
20193ad2ant1 1026 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )
21 simp2rr 1075 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )
22213ad2ant1 1026 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )
23 simp13 1037 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )
241, 2, 3, 4, 5dalawlem1 33348 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  ( LPlanes `  K )  /\  (
( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )
)  /\  ( ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
2512, 13, 14, 16, 18, 20, 22, 23, 24syl323anc 1294 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
26253expib 1208 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
27263exp 1204 . . . . . 6  |-  ( K  e.  HL  ->  (
( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
288, 11, 27ecased 952 . . . . 5  |-  ( K  e.  HL  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) )
2928exp4a 609 . . . 4  |-  ( K  e.  HL  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  ->  (
( S  e.  A  /\  T  e.  A  /\  U  e.  A
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
3029com34 86 . . 3  |-  ( K  e.  HL  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
3130com24 90 . 2  |-  ( K  e.  HL  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  ->  ( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
32313imp 1199 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   class class class wbr 4361   ` cfv 5539  (class class class)co 6244   lecple 15135   joincjn 16127   meetcmee 16128   Atomscatm 32741   HLchlt 32828   LPlanesclpl 32969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-op 3943  df-uni 4158  df-iun 4239  df-iin 4240  df-br 4362  df-opab 4421  df-mpt 4422  df-id 4706  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-1st 6746  df-2nd 6747  df-preset 16111  df-poset 16129  df-plt 16142  df-lub 16158  df-glb 16159  df-join 16160  df-meet 16161  df-p0 16223  df-p1 16224  df-lat 16230  df-clat 16292  df-oposet 32654  df-ol 32656  df-oml 32657  df-covers 32744  df-ats 32745  df-atl 32776  df-cvlat 32800  df-hlat 32829  df-llines 32975  df-lplanes 32976  df-lvols 32977  df-psubsp 32980  df-pmap 32981  df-padd 33273
This theorem is referenced by:  cdleme14  33751  cdleme20f  33793  cdlemg9  34113  cdlemg12c  34124  cdlemk6  34316  cdlemk6u  34341
  Copyright terms: Public domain W3C validator