MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcyg Structured version   Unicode version

Theorem cycsubgcyg 16377
Description: The cyclic subgroup generated by  A is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cycsubgcyg.x  |-  X  =  ( Base `  G
)
cycsubgcyg.t  |-  .x.  =  (.g
`  G )
cycsubgcyg.s  |-  S  =  ran  ( x  e.  ZZ  |->  ( x  .x.  A ) )
Assertion
Ref Expression
cycsubgcyg  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( Gs  S )  e. CycGrp )
Distinct variable groups:    x, A    x, G    x,  .x.    x, X
Allowed substitution hint:    S( x)

Proof of Theorem cycsubgcyg
Dummy variables  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . 2  |-  ( Base `  ( Gs  S ) )  =  ( Base `  ( Gs  S ) )
2 eqid 2443 . 2  |-  (.g `  ( Gs  S ) )  =  (.g `  ( Gs  S ) )
3 cycsubgcyg.s . . . 4  |-  S  =  ran  ( x  e.  ZZ  |->  ( x  .x.  A ) )
4 cycsubgcyg.x . . . . . 6  |-  X  =  ( Base `  G
)
5 cycsubgcyg.t . . . . . 6  |-  .x.  =  (.g
`  G )
6 eqid 2443 . . . . . 6  |-  ( x  e.  ZZ  |->  ( x 
.x.  A ) )  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
74, 5, 6cycsubgcl 15707 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ran  ( x  e.  ZZ  |->  ( x 
.x.  A ) )  e.  (SubGrp `  G
)  /\  A  e.  ran  ( x  e.  ZZ  |->  ( x  .x.  A ) ) ) )
87simpld 459 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ran  ( x  e.  ZZ  |->  ( x  .x.  A ) )  e.  (SubGrp `  G )
)
93, 8syl5eqel 2527 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  S  e.  (SubGrp `  G ) )
10 eqid 2443 . . . 4  |-  ( Gs  S )  =  ( Gs  S )
1110subggrp 15684 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  e.  Grp )
129, 11syl 16 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( Gs  S )  e.  Grp )
137simprd 463 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  A  e.  ran  (
x  e.  ZZ  |->  ( x  .x.  A ) ) )
1413, 3syl6eleqr 2534 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  A  e.  S )
1510subgbas 15685 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  ( Gs  S
) ) )
169, 15syl 16 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  S  =  ( Base `  ( Gs  S ) ) )
1714, 16eleqtrd 2519 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  A  e.  ( Base `  ( Gs  S ) ) )
1816eleq2d 2510 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( y  e.  S  <->  y  e.  ( Base `  ( Gs  S ) ) ) )
1918biimpar 485 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  (
Base `  ( Gs  S
) ) )  -> 
y  e.  S )
20 simpr 461 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  S
)  ->  y  e.  S )
2120, 3syl6eleq 2533 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  S
)  ->  y  e.  ran  ( x  e.  ZZ  |->  ( x  .x.  A ) ) )
22 oveq1 6098 . . . . . . 7  |-  ( x  =  n  ->  (
x  .x.  A )  =  ( n  .x.  A ) )
2322cbvmptv 4383 . . . . . 6  |-  ( x  e.  ZZ  |->  ( x 
.x.  A ) )  =  ( n  e.  ZZ  |->  ( n  .x.  A ) )
24 ovex 6116 . . . . . 6  |-  ( n 
.x.  A )  e. 
_V
2523, 24elrnmpti 5090 . . . . 5  |-  ( y  e.  ran  ( x  e.  ZZ  |->  ( x 
.x.  A ) )  <->  E. n  e.  ZZ  y  =  ( n  .x.  A ) )
2621, 25sylib 196 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  S
)  ->  E. n  e.  ZZ  y  =  ( n  .x.  A ) )
279ad2antrr 725 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  y  e.  S )  /\  n  e.  ZZ )  ->  S  e.  (SubGrp `  G )
)
28 simpr 461 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  y  e.  S )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
2914ad2antrr 725 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  y  e.  S )  /\  n  e.  ZZ )  ->  A  e.  S )
305, 10, 2subgmulg 15695 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  n  e.  ZZ  /\  A  e.  S )  ->  (
n  .x.  A )  =  ( n (.g `  ( Gs  S ) ) A ) )
3127, 28, 29, 30syl3anc 1218 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  y  e.  S )  /\  n  e.  ZZ )  ->  (
n  .x.  A )  =  ( n (.g `  ( Gs  S ) ) A ) )
3231eqeq2d 2454 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  y  e.  S )  /\  n  e.  ZZ )  ->  (
y  =  ( n 
.x.  A )  <->  y  =  ( n (.g `  ( Gs  S ) ) A ) ) )
3332rexbidva 2732 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  S
)  ->  ( E. n  e.  ZZ  y  =  ( n  .x.  A )  <->  E. n  e.  ZZ  y  =  ( n (.g `  ( Gs  S ) ) A ) ) )
3426, 33mpbid 210 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  S
)  ->  E. n  e.  ZZ  y  =  ( n (.g `  ( Gs  S ) ) A ) )
3519, 34syldan 470 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  (
Base `  ( Gs  S
) ) )  ->  E. n  e.  ZZ  y  =  ( n
(.g `  ( Gs  S ) ) A ) )
361, 2, 12, 17, 35iscygd 16364 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( Gs  S )  e. CycGrp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2716    e. cmpt 4350   ran crn 4841   ` cfv 5418  (class class class)co 6091   ZZcz 10646   Basecbs 14174   ↾s cress 14175   Grpcgrp 15410  .gcmg 15414  SubGrpcsubg 15675  CycGrpccyg 16354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-n0 10580  df-z 10647  df-uz 10862  df-fz 11438  df-seq 11807  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-mulg 15548  df-subg 15678  df-cyg 16355
This theorem is referenced by:  cycsubgcyg2  16378
  Copyright terms: Public domain W3C validator