MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcl Unicode version

Theorem cycsubgcl 14921
Description: The set of integer powers of an element  A of a group forms a subgroup containing  A, called the cyclic group generated by the element  A. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cycsubg.x  |-  X  =  ( Base `  G
)
cycsubg.t  |-  .x.  =  (.g
`  G )
cycsubg.f  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
Assertion
Ref Expression
cycsubgcl  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ran  F  e.  (SubGrp `  G )  /\  A  e.  ran  F ) )
Distinct variable groups:    x, A    x, G    x,  .x.    x, X
Allowed substitution hint:    F( x)

Proof of Theorem cycsubgcl
Dummy variables  m  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubg.x . . . . . . . 8  |-  X  =  ( Base `  G
)
2 cycsubg.t . . . . . . . 8  |-  .x.  =  (.g
`  G )
31, 2mulgcl 14862 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ZZ  /\  A  e.  X )  ->  (
x  .x.  A )  e.  X )
433expa 1153 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  x  e.  ZZ )  /\  A  e.  X
)  ->  ( x  .x.  A )  e.  X
)
54an32s 780 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  ZZ )  ->  ( x  .x.  A )  e.  X
)
6 cycsubg.f . . . . 5  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
75, 6fmptd 5852 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F : ZZ --> X )
8 frn 5556 . . . 4  |-  ( F : ZZ --> X  ->  ran  F  C_  X )
97, 8syl 16 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ran  F  C_  X
)
10 1z 10267 . . . . . . 7  |-  1  e.  ZZ
11 oveq1 6047 . . . . . . . 8  |-  ( x  =  1  ->  (
x  .x.  A )  =  ( 1  .x. 
A ) )
12 ovex 6065 . . . . . . . 8  |-  ( 1 
.x.  A )  e. 
_V
1311, 6, 12fvmpt 5765 . . . . . . 7  |-  ( 1  e.  ZZ  ->  ( F `  1 )  =  ( 1  .x. 
A ) )
1410, 13ax-mp 8 . . . . . 6  |-  ( F `
 1 )  =  ( 1  .x.  A
)
151, 2mulg1 14852 . . . . . . 7  |-  ( A  e.  X  ->  (
1  .x.  A )  =  A )
1615adantl 453 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( 1  .x.  A
)  =  A )
1714, 16syl5eq 2448 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  1
)  =  A )
18 ffn 5550 . . . . . . 7  |-  ( F : ZZ --> X  ->  F  Fn  ZZ )
197, 18syl 16 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F  Fn  ZZ )
20 fnfvelrn 5826 . . . . . 6  |-  ( ( F  Fn  ZZ  /\  1  e.  ZZ )  ->  ( F `  1
)  e.  ran  F
)
2119, 10, 20sylancl 644 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  1
)  e.  ran  F
)
2217, 21eqeltrrd 2479 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  A  e.  ran  F
)
23 ne0i 3594 . . . 4  |-  ( A  e.  ran  F  ->  ran  F  =/=  (/) )
2422, 23syl 16 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ran  F  =/=  (/) )
25 df-3an 938 . . . . . . . . . . . . 13  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ  /\  A  e.  X )  <->  ( (
m  e.  ZZ  /\  n  e.  ZZ )  /\  A  e.  X
) )
26 eqid 2404 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
271, 2, 26mulgdir 14870 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( m  e.  ZZ  /\  n  e.  ZZ  /\  A  e.  X )
)  ->  ( (
m  +  n ) 
.x.  A )  =  ( ( m  .x.  A ) ( +g  `  G ) ( n 
.x.  A ) ) )
2825, 27sylan2br 463 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( ( m  e.  ZZ  /\  n  e.  ZZ )  /\  A  e.  X ) )  -> 
( ( m  +  n )  .x.  A
)  =  ( ( m  .x.  A ) ( +g  `  G
) ( n  .x.  A ) ) )
2928anass1rs 783 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( ( m  +  n )  .x.  A
)  =  ( ( m  .x.  A ) ( +g  `  G
) ( n  .x.  A ) ) )
30 zaddcl 10273 . . . . . . . . . . . . 13  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  ( m  +  n
)  e.  ZZ )
3130adantl 453 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( m  +  n
)  e.  ZZ )
32 oveq1 6047 . . . . . . . . . . . . 13  |-  ( x  =  ( m  +  n )  ->  (
x  .x.  A )  =  ( ( m  +  n )  .x.  A ) )
33 ovex 6065 . . . . . . . . . . . . 13  |-  ( ( m  +  n ) 
.x.  A )  e. 
_V
3432, 6, 33fvmpt 5765 . . . . . . . . . . . 12  |-  ( ( m  +  n )  e.  ZZ  ->  ( F `  ( m  +  n ) )  =  ( ( m  +  n )  .x.  A
) )
3531, 34syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  (
m  +  n ) )  =  ( ( m  +  n ) 
.x.  A ) )
36 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( x  =  m  ->  (
x  .x.  A )  =  ( m  .x.  A ) )
37 ovex 6065 . . . . . . . . . . . . . 14  |-  ( m 
.x.  A )  e. 
_V
3836, 6, 37fvmpt 5765 . . . . . . . . . . . . 13  |-  ( m  e.  ZZ  ->  ( F `  m )  =  ( m  .x.  A ) )
3938ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  m
)  =  ( m 
.x.  A ) )
40 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( x  =  n  ->  (
x  .x.  A )  =  ( n  .x.  A ) )
41 ovex 6065 . . . . . . . . . . . . . 14  |-  ( n 
.x.  A )  e. 
_V
4240, 6, 41fvmpt 5765 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  ( F `  n )  =  ( n  .x.  A ) )
4342ad2antll 710 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  n
)  =  ( n 
.x.  A ) )
4439, 43oveq12d 6058 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  =  ( ( m 
.x.  A ) ( +g  `  G ) ( n  .x.  A
) ) )
4529, 35, 443eqtr4d 2446 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  (
m  +  n ) )  =  ( ( F `  m ) ( +g  `  G
) ( F `  n ) ) )
46 fnfvelrn 5826 . . . . . . . . . . 11  |-  ( ( F  Fn  ZZ  /\  ( m  +  n
)  e.  ZZ )  ->  ( F `  ( m  +  n
) )  e.  ran  F )
4719, 30, 46syl2an 464 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( F `  (
m  +  n ) )  e.  ran  F
)
4845, 47eqeltrrd 2479 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  -> 
( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  e.  ran  F )
4948anassrs 630 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  A  e.  X )  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( F `  m
) ( +g  `  G
) ( F `  n ) )  e. 
ran  F )
5049ralrimiva 2749 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  A. n  e.  ZZ  ( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  e.  ran  F )
51 oveq2 6048 . . . . . . . . . . 11  |-  ( v  =  ( F `  n )  ->  (
( F `  m
) ( +g  `  G
) v )  =  ( ( F `  m ) ( +g  `  G ) ( F `
 n ) ) )
5251eleq1d 2470 . . . . . . . . . 10  |-  ( v  =  ( F `  n )  ->  (
( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  <->  ( ( F `  m )
( +g  `  G ) ( F `  n
) )  e.  ran  F ) )
5352ralrn 5832 . . . . . . . . 9  |-  ( F  Fn  ZZ  ->  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  <->  A. n  e.  ZZ  ( ( F `
 m ) ( +g  `  G ) ( F `  n
) )  e.  ran  F ) )
5419, 53syl 16 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( A. v  e. 
ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F  <->  A. n  e.  ZZ  ( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  e.  ran  F ) )
5554adantr 452 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F  <->  A. n  e.  ZZ  ( ( F `  m ) ( +g  `  G ) ( F `
 n ) )  e.  ran  F ) )
5650, 55mpbird 224 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F )
57 eqid 2404 . . . . . . . . . . 11  |-  ( inv g `  G )  =  ( inv g `  G )
581, 2, 57mulgneg 14863 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  m  e.  ZZ  /\  A  e.  X )  ->  ( -u m  .x.  A )  =  ( ( inv g `  G ) `
 ( m  .x.  A ) ) )
59583expa 1153 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  m  e.  ZZ )  /\  A  e.  X
)  ->  ( -u m  .x.  A )  =  ( ( inv g `  G ) `  (
m  .x.  A )
) )
6059an32s 780 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( -u m  .x.  A )  =  ( ( inv g `  G ) `  (
m  .x.  A )
) )
61 znegcl 10269 . . . . . . . . . 10  |-  ( m  e.  ZZ  ->  -u m  e.  ZZ )
6261adantl 453 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  -u m  e.  ZZ )
63 oveq1 6047 . . . . . . . . . 10  |-  ( x  =  -u m  ->  (
x  .x.  A )  =  ( -u m  .x.  A ) )
64 ovex 6065 . . . . . . . . . 10  |-  ( -u m  .x.  A )  e. 
_V
6563, 6, 64fvmpt 5765 . . . . . . . . 9  |-  ( -u m  e.  ZZ  ->  ( F `  -u m
)  =  ( -u m  .x.  A ) )
6662, 65syl 16 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( F `  -u m )  =  (
-u m  .x.  A
) )
6738adantl 453 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( F `  m )  =  ( m  .x.  A ) )
6867fveq2d 5691 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( ( inv g `  G ) `
 ( F `  m ) )  =  ( ( inv g `  G ) `  (
m  .x.  A )
) )
6960, 66, 683eqtr4d 2446 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( F `  -u m )  =  ( ( inv g `  G ) `  ( F `  m )
) )
70 fnfvelrn 5826 . . . . . . . 8  |-  ( ( F  Fn  ZZ  /\  -u m  e.  ZZ )  ->  ( F `  -u m )  e.  ran  F )
7119, 61, 70syl2an 464 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( F `  -u m )  e.  ran  F )
7269, 71eqeltrrd 2479 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( ( inv g `  G ) `
 ( F `  m ) )  e. 
ran  F )
7356, 72jca 519 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  m  e.  ZZ )  ->  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F  /\  (
( inv g `  G ) `  ( F `  m )
)  e.  ran  F
) )
7473ralrimiva 2749 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  A. m  e.  ZZ  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  /\  ( ( inv g `  G ) `  ( F `  m )
)  e.  ran  F
) )
75 oveq1 6047 . . . . . . . . 9  |-  ( u  =  ( F `  m )  ->  (
u ( +g  `  G
) v )  =  ( ( F `  m ) ( +g  `  G ) v ) )
7675eleq1d 2470 . . . . . . . 8  |-  ( u  =  ( F `  m )  ->  (
( u ( +g  `  G ) v )  e.  ran  F  <->  ( ( F `  m )
( +g  `  G ) v )  e.  ran  F ) )
7776ralbidv 2686 . . . . . . 7  |-  ( u  =  ( F `  m )  ->  ( A. v  e.  ran  F ( u ( +g  `  G ) v )  e.  ran  F  <->  A. v  e.  ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F ) )
78 fveq2 5687 . . . . . . . 8  |-  ( u  =  ( F `  m )  ->  (
( inv g `  G ) `  u
)  =  ( ( inv g `  G
) `  ( F `  m ) ) )
7978eleq1d 2470 . . . . . . 7  |-  ( u  =  ( F `  m )  ->  (
( ( inv g `  G ) `  u
)  e.  ran  F  <->  ( ( inv g `  G ) `  ( F `  m )
)  e.  ran  F
) )
8077, 79anbi12d 692 . . . . . 6  |-  ( u  =  ( F `  m )  ->  (
( A. v  e. 
ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( inv g `  G ) `  u
)  e.  ran  F
)  <->  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G
) v )  e. 
ran  F  /\  (
( inv g `  G ) `  ( F `  m )
)  e.  ran  F
) ) )
8180ralrn 5832 . . . . 5  |-  ( F  Fn  ZZ  ->  ( A. u  e.  ran  F ( A. v  e. 
ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( inv g `  G ) `  u
)  e.  ran  F
)  <->  A. m  e.  ZZ  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  /\  ( ( inv g `  G ) `  ( F `  m )
)  e.  ran  F
) ) )
8219, 81syl 16 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( A. u  e. 
ran  F ( A. v  e.  ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( inv g `  G ) `  u
)  e.  ran  F
)  <->  A. m  e.  ZZ  ( A. v  e.  ran  F ( ( F `  m ) ( +g  `  G ) v )  e.  ran  F  /\  ( ( inv g `  G ) `  ( F `  m )
)  e.  ran  F
) ) )
8374, 82mpbird 224 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  A. u  e.  ran  F ( A. v  e. 
ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( inv g `  G ) `  u
)  e.  ran  F
) )
841, 26, 57issubg2 14914 . . . 4  |-  ( G  e.  Grp  ->  ( ran  F  e.  (SubGrp `  G )  <->  ( ran  F 
C_  X  /\  ran  F  =/=  (/)  /\  A. u  e.  ran  F ( A. v  e.  ran  F ( u ( +g  `  G
) v )  e. 
ran  F  /\  (
( inv g `  G ) `  u
)  e.  ran  F
) ) ) )
8584adantr 452 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ran  F  e.  (SubGrp `  G )  <->  ( ran  F  C_  X  /\  ran  F  =/=  (/)  /\  A. u  e.  ran  F ( A. v  e.  ran  F ( u ( +g  `  G ) v )  e.  ran  F  /\  ( ( inv g `  G ) `  u
)  e.  ran  F
) ) ) )
869, 24, 83, 85mpbir3and 1137 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ran  F  e.  (SubGrp `  G ) )
8786, 22jca 519 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ran  F  e.  (SubGrp `  G )  /\  A  e.  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666    C_ wss 3280   (/)c0 3588    e. cmpt 4226   ran crn 4838    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   1c1 8947    + caddc 8949   -ucneg 9248   ZZcz 10238   Basecbs 13424   +g cplusg 13484   Grpcgrp 14640   inv gcminusg 14641  .gcmg 14644  SubGrpcsubg 14893
This theorem is referenced by:  cycsubg  14923  oddvds2  15157  cycsubgcyg  15465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-seq 11279  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-mulg 14770  df-subg 14896
  Copyright terms: Public domain W3C validator