MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrt Structured version   Unicode version

Theorem cxpsqrt 23252
Description: The complex exponential function with exponent  1  /  2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other  n-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrt  |-  ( A  e.  CC  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
) )

Proof of Theorem cxpsqrt
StepHypRef Expression
1 halfcn 10751 . . . . . 6  |-  ( 1  /  2 )  e.  CC
2 halfre 10750 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
3 halfgt0 10752 . . . . . . 7  |-  0  <  ( 1  /  2
)
42, 3gt0ne0ii 10085 . . . . . 6  |-  ( 1  /  2 )  =/=  0
5 0cxp 23215 . . . . . 6  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( 1  /  2
)  =/=  0 )  ->  ( 0  ^c  ( 1  / 
2 ) )  =  0 )
61, 4, 5mp2an 670 . . . . 5  |-  ( 0  ^c  ( 1  /  2 ) )  =  0
7 sqrt0 13157 . . . . 5  |-  ( sqr `  0 )  =  0
86, 7eqtr4i 2486 . . . 4  |-  ( 0  ^c  ( 1  /  2 ) )  =  ( sqr `  0
)
9 oveq1 6277 . . . 4  |-  ( A  =  0  ->  ( A  ^c  ( 1  /  2 ) )  =  ( 0  ^c  ( 1  / 
2 ) ) )
10 fveq2 5848 . . . 4  |-  ( A  =  0  ->  ( sqr `  A )  =  ( sqr `  0
) )
118, 9, 103eqtr4a 2521 . . 3  |-  ( A  =  0  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
) )
1211a1i 11 . 2  |-  ( A  e.  CC  ->  ( A  =  0  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A ) ) )
13 ax-icn 9540 . . . . . . . . . . . . . . . . 17  |-  _i  e.  CC
14 sqrtcl 13276 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  ( sqr `  A )  e.  CC )
1514ad2antrr 723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( sqr `  A )  e.  CC )
16 sqmul 12213 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  ( sqr `  A )  e.  CC )  -> 
( ( _i  x.  ( sqr `  A ) ) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( ( sqr `  A
) ^ 2 ) ) )
1713, 15, 16sylancr 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( _i  x.  ( sqr `  A ) ) ^ 2 )  =  ( ( _i ^
2 )  x.  (
( sqr `  A
) ^ 2 ) ) )
18 i2 12250 . . . . . . . . . . . . . . . . . 18  |-  ( _i
^ 2 )  = 
-u 1
1918a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
_i ^ 2 )  =  -u 1 )
20 sqrtth 13279 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  (
( sqr `  A
) ^ 2 )  =  A )
2120ad2antrr 723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( sqr `  A
) ^ 2 )  =  A )
2219, 21oveq12d 6288 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( _i ^ 2 )  x.  ( ( sqr `  A ) ^ 2 ) )  =  ( -u 1  x.  A ) )
23 mulm1 9994 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( -u 1  x.  A )  =  -u A )
2423ad2antrr 723 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( -u 1  x.  A )  =  -u A )
2517, 22, 243eqtrd 2499 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( _i  x.  ( sqr `  A ) ) ^ 2 )  = 
-u A )
26 cxpsqrtlem 23251 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
_i  x.  ( sqr `  A ) )  e.  RR )
2726resqcld 12318 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( _i  x.  ( sqr `  A ) ) ^ 2 )  e.  RR )
2825, 27eqeltrrd 2543 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  -u A  e.  RR )
29 negeq0 9864 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  CC  ->  ( A  =  0  <->  -u A  =  0 ) )
3029necon3bid 2712 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  CC  ->  ( A  =/=  0  <->  -u A  =/=  0 ) )
3130biimpa 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u A  =/=  0 )
3231adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  -u A  =/=  0 )
3325, 32eqnetrd 2747 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( _i  x.  ( sqr `  A ) ) ^ 2 )  =/=  0 )
34 sq0i 12242 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  x.  ( sqr `  A ) )  =  0  ->  ( (
_i  x.  ( sqr `  A ) ) ^
2 )  =  0 )
3534necon3i 2694 . . . . . . . . . . . . . . . . 17  |-  ( ( ( _i  x.  ( sqr `  A ) ) ^ 2 )  =/=  0  ->  ( _i  x.  ( sqr `  A
) )  =/=  0
)
3633, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
_i  x.  ( sqr `  A ) )  =/=  0 )
3726, 36sqgt0d 12320 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  0  <  ( ( _i  x.  ( sqr `  A ) ) ^ 2 ) )
3837, 25breqtrd 4463 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  0  <  -u A )
3928, 38elrpd 11256 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  -u A  e.  RR+ )
40 logneg 23141 . . . . . . . . . . . . 13  |-  ( -u A  e.  RR+  ->  ( log `  -u -u A )  =  ( ( log `  -u A
)  +  ( _i  x.  pi ) ) )
4139, 40syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( log `  -u -u A )  =  ( ( log `  -u A
)  +  ( _i  x.  pi ) ) )
42 negneg 9860 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  -u -u A  =  A )
4342ad2antrr 723 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  -u -u A  =  A )
4443fveq2d 5852 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( log `  -u -u A )  =  ( log `  A
) )
4539relogcld 23176 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( log `  -u A )  e.  RR )
4645recnd 9611 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( log `  -u A )  e.  CC )
47 picn 23018 . . . . . . . . . . . . . 14  |-  pi  e.  CC
4813, 47mulcli 9590 . . . . . . . . . . . . 13  |-  ( _i  x.  pi )  e.  CC
49 addcom 9755 . . . . . . . . . . . . 13  |-  ( ( ( log `  -u A
)  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( ( log `  -u A
)  +  ( _i  x.  pi ) )  =  ( ( _i  x.  pi )  +  ( log `  -u A
) ) )
5046, 48, 49sylancl 660 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( log `  -u A
)  +  ( _i  x.  pi ) )  =  ( ( _i  x.  pi )  +  ( log `  -u A
) ) )
5141, 44, 503eqtr3d 2503 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( log `  A )  =  ( ( _i  x.  pi )  +  ( log `  -u A ) ) )
5251oveq2d 6286 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( 1  /  2
)  x.  ( log `  A ) )  =  ( ( 1  / 
2 )  x.  (
( _i  x.  pi )  +  ( log `  -u A ) ) ) )
53 adddi 9570 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( _i  x.  pi )  e.  CC  /\  ( log `  -u A )  e.  CC )  ->  (
( 1  /  2
)  x.  ( ( _i  x.  pi )  +  ( log `  -u A
) ) )  =  ( ( ( 1  /  2 )  x.  ( _i  x.  pi ) )  +  ( ( 1  /  2
)  x.  ( log `  -u A ) ) ) )
541, 48, 53mp3an12 1312 . . . . . . . . . . 11  |-  ( ( log `  -u A
)  e.  CC  ->  ( ( 1  /  2
)  x.  ( ( _i  x.  pi )  +  ( log `  -u A
) ) )  =  ( ( ( 1  /  2 )  x.  ( _i  x.  pi ) )  +  ( ( 1  /  2
)  x.  ( log `  -u A ) ) ) )
5546, 54syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( 1  /  2
)  x.  ( ( _i  x.  pi )  +  ( log `  -u A
) ) )  =  ( ( ( 1  /  2 )  x.  ( _i  x.  pi ) )  +  ( ( 1  /  2
)  x.  ( log `  -u A ) ) ) )
5652, 55eqtrd 2495 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( 1  /  2
)  x.  ( log `  A ) )  =  ( ( ( 1  /  2 )  x.  ( _i  x.  pi ) )  +  ( ( 1  /  2
)  x.  ( log `  -u A ) ) ) )
57 2cn 10602 . . . . . . . . . . . 12  |-  2  e.  CC
58 2ne0 10624 . . . . . . . . . . . 12  |-  2  =/=  0
59 divrec2 10220 . . . . . . . . . . . 12  |-  ( ( ( _i  x.  pi )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( _i  x.  pi )  /  2 )  =  ( ( 1  / 
2 )  x.  (
_i  x.  pi )
) )
6048, 57, 58, 59mp3an 1322 . . . . . . . . . . 11  |-  ( ( _i  x.  pi )  /  2 )  =  ( ( 1  / 
2 )  x.  (
_i  x.  pi )
)
6113, 47, 57, 58divassi 10296 . . . . . . . . . . 11  |-  ( ( _i  x.  pi )  /  2 )  =  ( _i  x.  (
pi  /  2 ) )
6260, 61eqtr3i 2485 . . . . . . . . . 10  |-  ( ( 1  /  2 )  x.  ( _i  x.  pi ) )  =  ( _i  x.  ( pi 
/  2 ) )
6362oveq1i 6280 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  x.  ( _i  x.  pi ) )  +  ( ( 1  /  2 )  x.  ( log `  -u A
) ) )  =  ( ( _i  x.  ( pi  /  2
) )  +  ( ( 1  /  2
)  x.  ( log `  -u A ) ) )
6456, 63syl6eq 2511 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( 1  /  2
)  x.  ( log `  A ) )  =  ( ( _i  x.  ( pi  /  2
) )  +  ( ( 1  /  2
)  x.  ( log `  -u A ) ) ) )
6564fveq2d 5852 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( exp `  ( ( 1  /  2 )  x.  ( log `  A
) ) )  =  ( exp `  (
( _i  x.  (
pi  /  2 ) )  +  ( ( 1  /  2 )  x.  ( log `  -u A
) ) ) ) )
6647, 57, 58divcli 10282 . . . . . . . . 9  |-  ( pi 
/  2 )  e.  CC
6713, 66mulcli 9590 . . . . . . . 8  |-  ( _i  x.  ( pi  / 
2 ) )  e.  CC
68 mulcl 9565 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( log `  -u A
)  e.  CC )  ->  ( ( 1  /  2 )  x.  ( log `  -u A
) )  e.  CC )
691, 46, 68sylancr 661 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( 1  /  2
)  x.  ( log `  -u A ) )  e.  CC )
70 efadd 13911 . . . . . . . 8  |-  ( ( ( _i  x.  (
pi  /  2 ) )  e.  CC  /\  ( ( 1  / 
2 )  x.  ( log `  -u A ) )  e.  CC )  -> 
( exp `  (
( _i  x.  (
pi  /  2 ) )  +  ( ( 1  /  2 )  x.  ( log `  -u A
) ) ) )  =  ( ( exp `  ( _i  x.  (
pi  /  2 ) ) )  x.  ( exp `  ( ( 1  /  2 )  x.  ( log `  -u A
) ) ) ) )
7167, 69, 70sylancr 661 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( exp `  ( ( _i  x.  ( pi  / 
2 ) )  +  ( ( 1  / 
2 )  x.  ( log `  -u A ) ) ) )  =  ( ( exp `  (
_i  x.  ( pi  /  2 ) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  -u A ) ) ) ) )
72 efhalfpi 23030 . . . . . . . . 9  |-  ( exp `  ( _i  x.  (
pi  /  2 ) ) )  =  _i
7372a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( exp `  ( _i  x.  ( pi  /  2
) ) )  =  _i )
74 negcl 9811 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  -u A  e.  CC )
7574ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  -u A  e.  CC )
761a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
1  /  2 )  e.  CC )
77 cxpef 23214 . . . . . . . . . 10  |-  ( (
-u A  e.  CC  /\  -u A  =/=  0  /\  ( 1  /  2
)  e.  CC )  ->  ( -u A  ^c  ( 1  /  2 ) )  =  ( exp `  (
( 1  /  2
)  x.  ( log `  -u A ) ) ) )
7875, 32, 76, 77syl3anc 1226 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( -u A  ^c  ( 1  /  2 ) )  =  ( exp `  ( ( 1  / 
2 )  x.  ( log `  -u A ) ) ) )
79 ax-1cn 9539 . . . . . . . . . . . . . 14  |-  1  e.  CC
80 2halves 10763 . . . . . . . . . . . . . 14  |-  ( 1  e.  CC  ->  (
( 1  /  2
)  +  ( 1  /  2 ) )  =  1 )
8179, 80ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( 1  /  2 )  +  ( 1  / 
2 ) )  =  1
8281oveq2i 6281 . . . . . . . . . . . 12  |-  ( -u A  ^c  ( ( 1  /  2 )  +  ( 1  / 
2 ) ) )  =  ( -u A  ^c  1 )
83 cxp1 23220 . . . . . . . . . . . . 13  |-  ( -u A  e.  CC  ->  (
-u A  ^c 
1 )  =  -u A )
8475, 83syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( -u A  ^c  1 )  =  -u A
)
8582, 84syl5eq 2507 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( -u A  ^c  ( ( 1  /  2
)  +  ( 1  /  2 ) ) )  =  -u A
)
86 rpcxpcl 23225 . . . . . . . . . . . . . . 15  |-  ( (
-u A  e.  RR+  /\  ( 1  /  2
)  e.  RR )  ->  ( -u A  ^c  ( 1  /  2 ) )  e.  RR+ )
8739, 2, 86sylancl 660 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( -u A  ^c  ( 1  /  2 ) )  e.  RR+ )
8887rpcnd 11261 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( -u A  ^c  ( 1  /  2 ) )  e.  CC )
8988sqvald 12289 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( -u A  ^c 
( 1  /  2
) ) ^ 2 )  =  ( (
-u A  ^c 
( 1  /  2
) )  x.  ( -u A  ^c  ( 1  /  2 ) ) ) )
90 cxpadd 23228 . . . . . . . . . . . . 13  |-  ( ( ( -u A  e.  CC  /\  -u A  =/=  0 )  /\  (
1  /  2 )  e.  CC  /\  (
1  /  2 )  e.  CC )  -> 
( -u A  ^c 
( ( 1  / 
2 )  +  ( 1  /  2 ) ) )  =  ( ( -u A  ^c  ( 1  / 
2 ) )  x.  ( -u A  ^c  ( 1  / 
2 ) ) ) )
9175, 32, 76, 76, 90syl211anc 1232 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( -u A  ^c  ( ( 1  /  2
)  +  ( 1  /  2 ) ) )  =  ( (
-u A  ^c 
( 1  /  2
) )  x.  ( -u A  ^c  ( 1  /  2 ) ) ) )
9289, 91eqtr4d 2498 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( -u A  ^c 
( 1  /  2
) ) ^ 2 )  =  ( -u A  ^c  ( ( 1  /  2 )  +  ( 1  / 
2 ) ) ) )
9375sqsqrtd 13352 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( sqr `  -u A
) ^ 2 )  =  -u A )
9485, 92, 933eqtr4d 2505 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( -u A  ^c 
( 1  /  2
) ) ^ 2 )  =  ( ( sqr `  -u A
) ^ 2 ) )
9587rprege0d 11266 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( -u A  ^c 
( 1  /  2
) )  e.  RR  /\  0  <_  ( -u A  ^c  ( 1  /  2 ) ) ) )
9639rpsqrtcld 13325 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( sqr `  -u A )  e.  RR+ )
9796rprege0d 11266 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( sqr `  -u A
)  e.  RR  /\  0  <_  ( sqr `  -u A
) ) )
98 sq11 12222 . . . . . . . . . . 11  |-  ( ( ( ( -u A  ^c  ( 1  /  2 ) )  e.  RR  /\  0  <_  ( -u A  ^c  ( 1  / 
2 ) ) )  /\  ( ( sqr `  -u A )  e.  RR  /\  0  <_ 
( sqr `  -u A
) ) )  -> 
( ( ( -u A  ^c  ( 1  /  2 ) ) ^ 2 )  =  ( ( sqr `  -u A
) ^ 2 )  <-> 
( -u A  ^c 
( 1  /  2
) )  =  ( sqr `  -u A
) ) )
9995, 97, 98syl2anc 659 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( ( -u A  ^c  ( 1  /  2 ) ) ^ 2 )  =  ( ( sqr `  -u A
) ^ 2 )  <-> 
( -u A  ^c 
( 1  /  2
) )  =  ( sqr `  -u A
) ) )
10094, 99mpbid 210 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( -u A  ^c  ( 1  /  2 ) )  =  ( sqr `  -u A ) )
10178, 100eqtr3d 2497 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( exp `  ( ( 1  /  2 )  x.  ( log `  -u A
) ) )  =  ( sqr `  -u A
) )
10273, 101oveq12d 6288 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( exp `  (
_i  x.  ( pi  /  2 ) ) )  x.  ( exp `  (
( 1  /  2
)  x.  ( log `  -u A ) ) ) )  =  ( _i  x.  ( sqr `  -u A ) ) )
10365, 71, 1023eqtrd 2499 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( exp `  ( ( 1  /  2 )  x.  ( log `  A
) ) )  =  ( _i  x.  ( sqr `  -u A ) ) )
104 cxpef 23214 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
1  /  2 )  e.  CC )  -> 
( A  ^c 
( 1  /  2
) )  =  ( exp `  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )
1051, 104mp3an3 1311 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  ^c 
( 1  /  2
) )  =  ( exp `  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )
106105adantr 463 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( A  ^c  ( 1  /  2 ) )  =  ( exp `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )
10743fveq2d 5852 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( sqr `  -u -u A )  =  ( sqr `  A
) )
10839rpge0d 11263 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  0  <_ 
-u A )
10928, 108sqrtnegd 13335 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( sqr `  -u -u A )  =  ( _i  x.  ( sqr `  -u A ) ) )
110107, 109eqtr3d 2497 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( sqr `  A )  =  ( _i  x.  ( sqr `  -u A ) ) )
111103, 106, 1103eqtr4d 2505 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
) )
112111ex 432 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
)  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
) ) )
11381oveq2i 6281 . . . . . . . . 9  |-  ( A  ^c  ( ( 1  /  2 )  +  ( 1  / 
2 ) ) )  =  ( A  ^c  1 )
114 cxpadd 23228 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( 1  / 
2 )  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( A  ^c  ( ( 1  /  2 )  +  ( 1  /  2
) ) )  =  ( ( A  ^c  ( 1  / 
2 ) )  x.  ( A  ^c 
( 1  /  2
) ) ) )
1151, 1, 114mp3an23 1314 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  ^c 
( ( 1  / 
2 )  +  ( 1  /  2 ) ) )  =  ( ( A  ^c 
( 1  /  2
) )  x.  ( A  ^c  ( 1  /  2 ) ) ) )
116 cxp1 23220 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  ^c  1 )  =  A )
117116adantr 463 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  ^c 
1 )  =  A )
118113, 115, 1173eqtr3a 2519 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  ^c  ( 1  / 
2 ) )  x.  ( A  ^c 
( 1  /  2
) ) )  =  A )
119 cxpcl 23223 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( A  ^c  ( 1  / 
2 ) )  e.  CC )
1201, 119mpan2 669 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  ^c  ( 1  /  2 ) )  e.  CC )
121120sqvald 12289 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A  ^c 
( 1  /  2
) ) ^ 2 )  =  ( ( A  ^c  ( 1  /  2 ) )  x.  ( A  ^c  ( 1  /  2 ) ) ) )
122121adantr 463 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  ^c  ( 1  / 
2 ) ) ^
2 )  =  ( ( A  ^c 
( 1  /  2
) )  x.  ( A  ^c  ( 1  /  2 ) ) ) )
12320adantr 463 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
124118, 122, 1233eqtr4d 2505 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  ^c  ( 1  / 
2 ) ) ^
2 )  =  ( ( sqr `  A
) ^ 2 ) )
125 sqeqor 12264 . . . . . . . . 9  |-  ( ( ( A  ^c 
( 1  /  2
) )  e.  CC  /\  ( sqr `  A
)  e.  CC )  ->  ( ( ( A  ^c  ( 1  /  2 ) ) ^ 2 )  =  ( ( sqr `  A ) ^ 2 )  <->  ( ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
)  \/  ( A  ^c  ( 1  /  2 ) )  =  -u ( sqr `  A
) ) ) )
126120, 14, 125syl2anc 659 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( ( A  ^c  ( 1  / 
2 ) ) ^
2 )  =  ( ( sqr `  A
) ^ 2 )  <-> 
( ( A  ^c  ( 1  / 
2 ) )  =  ( sqr `  A
)  \/  ( A  ^c  ( 1  /  2 ) )  =  -u ( sqr `  A
) ) ) )
127126biimpa 482 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( A  ^c  ( 1  / 
2 ) ) ^
2 )  =  ( ( sqr `  A
) ^ 2 ) )  ->  ( ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
)  \/  ( A  ^c  ( 1  /  2 ) )  =  -u ( sqr `  A
) ) )
128124, 127syldan 468 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( A  ^c  ( 1  / 
2 ) )  =  ( sqr `  A
)  \/  ( A  ^c  ( 1  /  2 ) )  =  -u ( sqr `  A
) ) )
129128ord 375 . . . . 5  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -.  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
)  ->  ( A  ^c  ( 1  /  2 ) )  =  -u ( sqr `  A
) ) )
130129con1d 124 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -.  ( A  ^c  ( 1  /  2 ) )  =  -u ( sqr `  A
)  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
) ) )
131112, 130pm2.61d 158 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  ^c 
( 1  /  2
) )  =  ( sqr `  A ) )
132131ex 432 . 2  |-  ( A  e.  CC  ->  ( A  =/=  0  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
) ) )
13312, 132pm2.61dne 2771 1  |-  ( A  e.  CC  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482   _ici 9483    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618   -ucneg 9797    / cdiv 10202   2c2 10581   RR+crp 11221   ^cexp 12148   sqrcsqrt 13148   expce 13879   picpi 13884   logclog 23108    ^c ccxp 23109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12982  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-limsup 13376  df-clim 13393  df-rlim 13394  df-sum 13591  df-ef 13885  df-sin 13887  df-cos 13888  df-pi 13890  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-fbas 18611  df-fg 18612  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-lp 19804  df-perf 19805  df-cn 19895  df-cnp 19896  df-haus 19983  df-tx 20229  df-hmeo 20422  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-limc 22436  df-dv 22437  df-log 23110  df-cxp 23111
This theorem is referenced by:  logsqrt  23253  dvsqrt  23286  resqrtcn  23291  sqrtcn  23292  efiatan  23440  efiatan2  23445  sqrtlim  23500  chpchtlim  23862  dvcnsqrt  30341
  Copyright terms: Public domain W3C validator