MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim Structured version   Unicode version

Theorem cxploglim 22330
Description: The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxploglim  |-  ( A  e.  RR+  ->  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0 )
Distinct variable group:    A, n

Proof of Theorem cxploglim
Dummy variables  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 10993 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
2 reefcl 13368 . . . 4  |-  ( A  e.  RR  ->  ( exp `  A )  e.  RR )
31, 2syl 16 . . 3  |-  ( A  e.  RR+  ->  ( exp `  A )  e.  RR )
4 efgt1 13396 . . 3  |-  ( A  e.  RR+  ->  1  < 
( exp `  A
) )
5 cxp2limlem 22328 . . 3  |-  ( ( ( exp `  A
)  e.  RR  /\  1  <  ( exp `  A
) )  ->  (
m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0 )
63, 4, 5syl2anc 656 . 2  |-  ( A  e.  RR+  ->  ( m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0 )
7 reefcl 13368 . . . . . . . 8  |-  ( z  e.  RR  ->  ( exp `  z )  e.  RR )
87adantl 463 . . . . . . 7  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  ( exp `  z )  e.  RR )
9 1re 9381 . . . . . . 7  |-  1  e.  RR
10 ifcl 3828 . . . . . . 7  |-  ( ( ( exp `  z
)  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_ 
( exp `  z
) ,  ( exp `  z ) ,  1 )  e.  RR )
118, 9, 10sylancl 657 . . . . . 6  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  e.  RR )
129a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  1  e.  RR )
138adantr 462 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( exp `  z
)  e.  RR )
14 rpre 10993 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  RR )
1514adantl 463 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  n  e.  RR )
16 maxlt 11160 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( exp `  z )  e.  RR  /\  n  e.  RR )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  <->  ( 1  <  n  /\  ( exp `  z )  < 
n ) ) )
1712, 13, 15, 16syl3anc 1213 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z ) ,  1 )  < 
n  <->  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )
18 simprrr 759 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  z
)  <  n )
19 reeflog 21988 . . . . . . . . . . . . . . 15  |-  ( n  e.  RR+  ->  ( exp `  ( log `  n
) )  =  n )
2019ad2antrl 722 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  ( log `  n ) )  =  n )
2118, 20breqtrrd 4315 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  z
)  <  ( exp `  ( log `  n
) ) )
22 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
z  e.  RR )
2314ad2antrl 722 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  n  e.  RR )
24 simprrl 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
1  <  n )
2523, 24rplogcld 22037 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  n
)  e.  RR+ )
2625rpred 11023 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  n
)  e.  RR )
27 eflt 13397 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  ( log `  n )  e.  RR )  -> 
( z  <  ( log `  n )  <->  ( exp `  z )  <  ( exp `  ( log `  n
) ) ) )
2822, 26, 27syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( z  <  ( log `  n )  <->  ( exp `  z )  <  ( exp `  ( log `  n
) ) ) )
2921, 28mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
z  <  ( log `  n ) )
30 breq2 4293 . . . . . . . . . . . . . . 15  |-  ( m  =  ( log `  n
)  ->  ( z  <  m  <->  z  <  ( log `  n ) ) )
31 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  ( log `  n
)  ->  m  =  ( log `  n ) )
32 oveq2 6098 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  ( log `  n
)  ->  ( ( exp `  A )  ^c  m )  =  ( ( exp `  A
)  ^c  ( log `  n ) ) )
3331, 32oveq12d 6108 . . . . . . . . . . . . . . . . 17  |-  ( m  =  ( log `  n
)  ->  ( m  /  ( ( exp `  A )  ^c 
m ) )  =  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )
3433fveq2d 5692 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( log `  n
)  ->  ( abs `  ( m  /  (
( exp `  A
)  ^c  m ) ) )  =  ( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) ) )
3534breq1d 4299 . . . . . . . . . . . . . . 15  |-  ( m  =  ( log `  n
)  ->  ( ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x  <->  ( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) )
3630, 35imbi12d 320 . . . . . . . . . . . . . 14  |-  ( m  =  ( log `  n
)  ->  ( (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  <->  ( z  <  ( log `  n
)  ->  ( abs `  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) ) )
3736rspcv 3066 . . . . . . . . . . . . 13  |-  ( ( log `  n )  e.  RR+  ->  ( A. m  e.  RR+  ( z  <  m  ->  ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x )  ->  (
z  <  ( log `  n )  ->  ( abs `  ( ( log `  n )  /  (
( exp `  A
)  ^c  ( log `  n ) ) ) )  < 
x ) ) )
3825, 37syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  ( z  <  ( log `  n
)  ->  ( abs `  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) ) )
3929, 38mpid 41 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  ( abs `  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) )
401ad2antrr 720 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  A  e.  RR )
4140relogefd 22036 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  ( exp `  A ) )  =  A )
4241oveq2d 6106 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  x.  ( log `  ( exp `  A
) ) )  =  ( ( log `  n
)  x.  A ) )
4325rpcnd 11025 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  n
)  e.  CC )
44 rpcn 10995 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  RR+  ->  A  e.  CC )
4544ad2antrr 720 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  A  e.  CC )
4643, 45mulcomd 9403 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  x.  A )  =  ( A  x.  ( log `  n ) ) )
4742, 46eqtrd 2473 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  x.  ( log `  ( exp `  A
) ) )  =  ( A  x.  ( log `  n ) ) )
4847fveq2d 5692 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  (
( log `  n
)  x.  ( log `  ( exp `  A
) ) ) )  =  ( exp `  ( A  x.  ( log `  n ) ) ) )
493ad2antrr 720 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  A
)  e.  RR )
5049recnd 9408 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  A
)  e.  CC )
51 efne0 13377 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( exp `  A )  =/=  0 )
5245, 51syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  A
)  =/=  0 )
5350, 52, 43cxpefd 22116 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( exp `  A
)  ^c  ( log `  n ) )  =  ( exp `  ( ( log `  n
)  x.  ( log `  ( exp `  A
) ) ) ) )
54 rpcn 10995 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR+  ->  n  e.  CC )
5554ad2antrl 722 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  n  e.  CC )
56 rpne0 11002 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR+  ->  n  =/=  0 )
5756ad2antrl 722 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  n  =/=  0 )
5855, 57, 45cxpefd 22116 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( n  ^c  A )  =  ( exp `  ( A  x.  ( log `  n
) ) ) )
5948, 53, 583eqtr4d 2483 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( exp `  A
)  ^c  ( log `  n ) )  =  ( n  ^c  A ) )
6059oveq2d 6106 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) )  =  ( ( log `  n )  /  (
n  ^c  A ) ) )
6160fveq2d 5692 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  =  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) ) )
6261breq1d 4299 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x  <->  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) )
6339, 62sylibd 214 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) )
6463expr 612 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( ( 1  <  n  /\  ( exp `  z )  < 
n )  ->  ( A. m  e.  RR+  (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  -> 
( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
6517, 64sylbid 215 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z ) ,  1 )  < 
n  ->  ( A. m  e.  RR+  ( z  <  m  ->  ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x )  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
6665com23 78 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( A. m  e.  RR+  ( z  < 
m  ->  ( abs `  ( m  /  (
( exp `  A
)  ^c  m ) ) )  < 
x )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
6766ralrimdva 2804 . . . . . 6  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  ( A. m  e.  RR+  (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  ->  A. n  e.  RR+  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
68 breq1 4292 . . . . . . . . 9  |-  ( y  =  if ( 1  <_  ( exp `  z
) ,  ( exp `  z ) ,  1 )  ->  ( y  <  n  <->  if ( 1  <_ 
( exp `  z
) ,  ( exp `  z ) ,  1 )  <  n ) )
6968imbi1d 317 . . . . . . . 8  |-  ( y  =  if ( 1  <_  ( exp `  z
) ,  ( exp `  z ) ,  1 )  ->  ( (
y  <  n  ->  ( abs `  ( ( log `  n )  /  ( n  ^c  A ) ) )  <  x )  <->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
7069ralbidv 2733 . . . . . . 7  |-  ( y  =  if ( 1  <_  ( exp `  z
) ,  ( exp `  z ) ,  1 )  ->  ( A. n  e.  RR+  ( y  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x )  <->  A. n  e.  RR+  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z ) ,  1 )  < 
n  ->  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
7170rspcev 3070 . . . . . 6  |-  ( ( if ( 1  <_ 
( exp `  z
) ,  ( exp `  z ) ,  1 )  e.  RR  /\  A. n  e.  RR+  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( ( log `  n )  /  ( n  ^c  A ) ) )  <  x ) )
7211, 67, 71syl6an 542 . . . . 5  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  ( A. m  e.  RR+  (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( ( log `  n )  /  ( n  ^c  A ) ) )  <  x ) ) )
7372rexlimdva 2839 . . . 4  |-  ( A  e.  RR+  ->  ( E. z  e.  RR  A. m  e.  RR+  ( z  <  m  ->  ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x )  ->  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
7473ralimdv 2793 . . 3  |-  ( A  e.  RR+  ->  ( A. x  e.  RR+  E. z  e.  RR  A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
75 simpr 458 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  m  e.  RR+ )
761adantr 462 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  A  e.  RR )
7776rpefcld 13385 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  ( exp `  A )  e.  RR+ )
78 rpre 10993 . . . . . . . . 9  |-  ( m  e.  RR+  ->  m  e.  RR )
7978adantl 463 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  m  e.  RR )
8077, 79rpcxpcld 22134 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  (
( exp `  A
)  ^c  m )  e.  RR+ )
8175, 80rpdivcld 11040 . . . . . 6  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  (
m  /  ( ( exp `  A )  ^c  m ) )  e.  RR+ )
8281rpcnd 11025 . . . . 5  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  (
m  /  ( ( exp `  A )  ^c  m ) )  e.  CC )
8382ralrimiva 2797 . . . 4  |-  ( A  e.  RR+  ->  A. m  e.  RR+  ( m  / 
( ( exp `  A
)  ^c  m ) )  e.  CC )
84 rpssre 10997 . . . . 5  |-  RR+  C_  RR
8584a1i 11 . . . 4  |-  ( A  e.  RR+  ->  RR+  C_  RR )
8683, 85rlim0lt 12983 . . 3  |-  ( A  e.  RR+  ->  ( ( m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0  <->  A. x  e.  RR+  E. z  e.  RR  A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
) ) )
87 relogcl 21986 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
8887adantl 463 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  ( log `  n )  e.  RR )
89 simpr 458 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  n  e.  RR+ )
901adantr 462 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  A  e.  RR )
9189, 90rpcxpcld 22134 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
n  ^c  A )  e.  RR+ )
9288, 91rerpdivcld 11050 . . . . . 6  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
( log `  n
)  /  ( n  ^c  A ) )  e.  RR )
9392recnd 9408 . . . . 5  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
( log `  n
)  /  ( n  ^c  A ) )  e.  CC )
9493ralrimiva 2797 . . . 4  |-  ( A  e.  RR+  ->  A. n  e.  RR+  ( ( log `  n )  /  (
n  ^c  A ) )  e.  CC )
9594, 85rlim0lt 12983 . . 3  |-  ( A  e.  RR+  ->  ( ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0  <->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
9674, 86, 953imtr4d 268 . 2  |-  ( A  e.  RR+  ->  ( ( m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0  ->  (
n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0 ) )
976, 96mpd 15 1  |-  ( A  e.  RR+  ->  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714    C_ wss 3325   ifcif 3788   class class class wbr 4289    e. cmpt 4347   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    x. cmul 9283    < clt 9414    <_ cle 9415    / cdiv 9989   RR+crp 10987   abscabs 12719    ~~> r crli 12959   expce 13343   logclog 21965    ^c ccxp 21966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-pi 13354  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301  df-log 21967  df-cxp 21968
This theorem is referenced by:  cxploglim2  22331  logfacrlim  22522  chtppilimlem2  22682  chpchtlim  22687  dchrvmasumlema  22708  logdivsum  22741
  Copyright terms: Public domain W3C validator