MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxploglim Structured version   Unicode version

Theorem cxploglim 23424
Description: The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxploglim  |-  ( A  e.  RR+  ->  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0 )
Distinct variable group:    A, n

Proof of Theorem cxploglim
Dummy variables  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 11145 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
2 reefcl 13824 . . . 4  |-  ( A  e.  RR  ->  ( exp `  A )  e.  RR )
31, 2syl 16 . . 3  |-  ( A  e.  RR+  ->  ( exp `  A )  e.  RR )
4 efgt1 13853 . . 3  |-  ( A  e.  RR+  ->  1  < 
( exp `  A
) )
5 cxp2limlem 23422 . . 3  |-  ( ( ( exp `  A
)  e.  RR  /\  1  <  ( exp `  A
) )  ->  (
m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0 )
63, 4, 5syl2anc 659 . 2  |-  ( A  e.  RR+  ->  ( m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0 )
7 reefcl 13824 . . . . . . . 8  |-  ( z  e.  RR  ->  ( exp `  z )  e.  RR )
87adantl 464 . . . . . . 7  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  ( exp `  z )  e.  RR )
9 1re 9506 . . . . . . 7  |-  1  e.  RR
10 ifcl 3899 . . . . . . 7  |-  ( ( ( exp `  z
)  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_ 
( exp `  z
) ,  ( exp `  z ) ,  1 )  e.  RR )
118, 9, 10sylancl 660 . . . . . 6  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  e.  RR )
129a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  1  e.  RR )
138adantr 463 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( exp `  z
)  e.  RR )
14 rpre 11145 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  RR )
1514adantl 464 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  n  e.  RR )
16 maxlt 11314 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( exp `  z )  e.  RR  /\  n  e.  RR )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  <->  ( 1  <  n  /\  ( exp `  z )  < 
n ) ) )
1712, 13, 15, 16syl3anc 1226 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z ) ,  1 )  < 
n  <->  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )
18 simprrr 764 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  z
)  <  n )
19 reeflog 23053 . . . . . . . . . . . . . . 15  |-  ( n  e.  RR+  ->  ( exp `  ( log `  n
) )  =  n )
2019ad2antrl 725 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  ( log `  n ) )  =  n )
2118, 20breqtrrd 4393 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  z
)  <  ( exp `  ( log `  n
) ) )
22 simplr 753 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
z  e.  RR )
2314ad2antrl 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  n  e.  RR )
24 simprrl 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
1  <  n )
2523, 24rplogcld 23101 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  n
)  e.  RR+ )
2625rpred 11177 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  n
)  e.  RR )
27 eflt 13854 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  ( log `  n )  e.  RR )  -> 
( z  <  ( log `  n )  <->  ( exp `  z )  <  ( exp `  ( log `  n
) ) ) )
2822, 26, 27syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( z  <  ( log `  n )  <->  ( exp `  z )  <  ( exp `  ( log `  n
) ) ) )
2921, 28mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
z  <  ( log `  n ) )
30 breq2 4371 . . . . . . . . . . . . . . 15  |-  ( m  =  ( log `  n
)  ->  ( z  <  m  <->  z  <  ( log `  n ) ) )
31 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  ( log `  n
)  ->  m  =  ( log `  n ) )
32 oveq2 6204 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  ( log `  n
)  ->  ( ( exp `  A )  ^c  m )  =  ( ( exp `  A
)  ^c  ( log `  n ) ) )
3331, 32oveq12d 6214 . . . . . . . . . . . . . . . . 17  |-  ( m  =  ( log `  n
)  ->  ( m  /  ( ( exp `  A )  ^c 
m ) )  =  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )
3433fveq2d 5778 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( log `  n
)  ->  ( abs `  ( m  /  (
( exp `  A
)  ^c  m ) ) )  =  ( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) ) )
3534breq1d 4377 . . . . . . . . . . . . . . 15  |-  ( m  =  ( log `  n
)  ->  ( ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x  <->  ( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) )
3630, 35imbi12d 318 . . . . . . . . . . . . . 14  |-  ( m  =  ( log `  n
)  ->  ( (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  <->  ( z  <  ( log `  n
)  ->  ( abs `  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) ) )
3736rspcv 3131 . . . . . . . . . . . . 13  |-  ( ( log `  n )  e.  RR+  ->  ( A. m  e.  RR+  ( z  <  m  ->  ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x )  ->  (
z  <  ( log `  n )  ->  ( abs `  ( ( log `  n )  /  (
( exp `  A
)  ^c  ( log `  n ) ) ) )  < 
x ) ) )
3825, 37syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  ( z  <  ( log `  n
)  ->  ( abs `  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) ) )
3929, 38mpid 41 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  ( abs `  ( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x ) )
401ad2antrr 723 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  A  e.  RR )
4140relogefd 23100 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  ( exp `  A ) )  =  A )
4241oveq2d 6212 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  x.  ( log `  ( exp `  A
) ) )  =  ( ( log `  n
)  x.  A ) )
4325rpcnd 11179 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( log `  n
)  e.  CC )
44 rpcn 11147 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  RR+  ->  A  e.  CC )
4544ad2antrr 723 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  A  e.  CC )
4643, 45mulcomd 9528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  x.  A )  =  ( A  x.  ( log `  n ) ) )
4742, 46eqtrd 2423 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  x.  ( log `  ( exp `  A
) ) )  =  ( A  x.  ( log `  n ) ) )
4847fveq2d 5778 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  (
( log `  n
)  x.  ( log `  ( exp `  A
) ) ) )  =  ( exp `  ( A  x.  ( log `  n ) ) ) )
493ad2antrr 723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  A
)  e.  RR )
5049recnd 9533 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  A
)  e.  CC )
51 efne0 13834 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( exp `  A )  =/=  0 )
5245, 51syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( exp `  A
)  =/=  0 )
5350, 52, 43cxpefd 23180 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( exp `  A
)  ^c  ( log `  n ) )  =  ( exp `  ( ( log `  n
)  x.  ( log `  ( exp `  A
) ) ) ) )
54 rpcn 11147 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR+  ->  n  e.  CC )
5554ad2antrl 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  n  e.  CC )
56 rpne0 11154 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  RR+  ->  n  =/=  0 )
5756ad2antrl 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  ->  n  =/=  0 )
5855, 57, 45cxpefd 23180 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( n  ^c  A )  =  ( exp `  ( A  x.  ( log `  n
) ) ) )
5948, 53, 583eqtr4d 2433 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( exp `  A
)  ^c  ( log `  n ) )  =  ( n  ^c  A ) )
6059oveq2d 6212 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) )  =  ( ( log `  n )  /  (
n  ^c  A ) ) )
6160fveq2d 5778 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  =  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) ) )
6261breq1d 4377 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( ( abs `  (
( log `  n
)  /  ( ( exp `  A )  ^c  ( log `  n ) ) ) )  <  x  <->  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) )
6339, 62sylibd 214 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  ( n  e.  RR+  /\  ( 1  < 
n  /\  ( exp `  z )  <  n
) ) )  -> 
( A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) )
6463expr 613 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( ( 1  <  n  /\  ( exp `  z )  < 
n )  ->  ( A. m  e.  RR+  (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  -> 
( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
6517, 64sylbid 215 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z ) ,  1 )  < 
n  ->  ( A. m  e.  RR+  ( z  <  m  ->  ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x )  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
6665com23 78 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  z  e.  RR )  /\  n  e.  RR+ )  ->  ( A. m  e.  RR+  ( z  < 
m  ->  ( abs `  ( m  /  (
( exp `  A
)  ^c  m ) ) )  < 
x )  ->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
6766ralrimdva 2800 . . . . . 6  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  ( A. m  e.  RR+  (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  ->  A. n  e.  RR+  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
68 breq1 4370 . . . . . . . . 9  |-  ( y  =  if ( 1  <_  ( exp `  z
) ,  ( exp `  z ) ,  1 )  ->  ( y  <  n  <->  if ( 1  <_ 
( exp `  z
) ,  ( exp `  z ) ,  1 )  <  n ) )
6968imbi1d 315 . . . . . . . 8  |-  ( y  =  if ( 1  <_  ( exp `  z
) ,  ( exp `  z ) ,  1 )  ->  ( (
y  <  n  ->  ( abs `  ( ( log `  n )  /  ( n  ^c  A ) ) )  <  x )  <->  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) ) )
7069ralbidv 2821 . . . . . . 7  |-  ( y  =  if ( 1  <_  ( exp `  z
) ,  ( exp `  z ) ,  1 )  ->  ( A. n  e.  RR+  ( y  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x )  <->  A. n  e.  RR+  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z ) ,  1 )  < 
n  ->  ( abs `  ( ( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
7170rspcev 3135 . . . . . 6  |-  ( ( if ( 1  <_ 
( exp `  z
) ,  ( exp `  z ) ,  1 )  e.  RR  /\  A. n  e.  RR+  ( if ( 1  <_  ( exp `  z ) ,  ( exp `  z
) ,  1 )  <  n  ->  ( abs `  ( ( log `  n )  /  (
n  ^c  A ) ) )  < 
x ) )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( ( log `  n )  /  ( n  ^c  A ) ) )  <  x ) )
7211, 67, 71syl6an 543 . . . . 5  |-  ( ( A  e.  RR+  /\  z  e.  RR )  ->  ( A. m  e.  RR+  (
z  <  m  ->  ( abs `  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  <  x )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( ( log `  n )  /  ( n  ^c  A ) ) )  <  x ) ) )
7372rexlimdva 2874 . . . 4  |-  ( A  e.  RR+  ->  ( E. z  e.  RR  A. m  e.  RR+  ( z  <  m  ->  ( abs `  ( m  / 
( ( exp `  A
)  ^c  m ) ) )  < 
x )  ->  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
7473ralimdv 2792 . . 3  |-  ( A  e.  RR+  ->  ( A. x  e.  RR+  E. z  e.  RR  A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
)  ->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
75 simpr 459 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  m  e.  RR+ )
761adantr 463 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  A  e.  RR )
7776rpefcld 13842 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  ( exp `  A )  e.  RR+ )
78 rpre 11145 . . . . . . . . 9  |-  ( m  e.  RR+  ->  m  e.  RR )
7978adantl 464 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  m  e.  RR )
8077, 79rpcxpcld 23198 . . . . . . 7  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  (
( exp `  A
)  ^c  m )  e.  RR+ )
8175, 80rpdivcld 11194 . . . . . 6  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  (
m  /  ( ( exp `  A )  ^c  m ) )  e.  RR+ )
8281rpcnd 11179 . . . . 5  |-  ( ( A  e.  RR+  /\  m  e.  RR+ )  ->  (
m  /  ( ( exp `  A )  ^c  m ) )  e.  CC )
8382ralrimiva 2796 . . . 4  |-  ( A  e.  RR+  ->  A. m  e.  RR+  ( m  / 
( ( exp `  A
)  ^c  m ) )  e.  CC )
84 rpssre 11149 . . . . 5  |-  RR+  C_  RR
8584a1i 11 . . . 4  |-  ( A  e.  RR+  ->  RR+  C_  RR )
8683, 85rlim0lt 13334 . . 3  |-  ( A  e.  RR+  ->  ( ( m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0  <->  A. x  e.  RR+  E. z  e.  RR  A. m  e.  RR+  ( z  <  m  ->  ( abs `  (
m  /  ( ( exp `  A )  ^c  m ) ) )  <  x
) ) )
87 relogcl 23048 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
8887adantl 464 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  ( log `  n )  e.  RR )
89 simpr 459 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  n  e.  RR+ )
901adantr 463 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  A  e.  RR )
9189, 90rpcxpcld 23198 . . . . . . 7  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
n  ^c  A )  e.  RR+ )
9288, 91rerpdivcld 11204 . . . . . 6  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
( log `  n
)  /  ( n  ^c  A ) )  e.  RR )
9392recnd 9533 . . . . 5  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  (
( log `  n
)  /  ( n  ^c  A ) )  e.  CC )
9493ralrimiva 2796 . . . 4  |-  ( A  e.  RR+  ->  A. n  e.  RR+  ( ( log `  n )  /  (
n  ^c  A ) )  e.  CC )
9594, 85rlim0lt 13334 . . 3  |-  ( A  e.  RR+  ->  ( ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0  <->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  (
( log `  n
)  /  ( n  ^c  A ) ) )  <  x
) ) )
9674, 86, 953imtr4d 268 . 2  |-  ( A  e.  RR+  ->  ( ( m  e.  RR+  |->  ( m  /  ( ( exp `  A )  ^c 
m ) ) )  ~~> r  0  ->  (
n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0 ) )
976, 96mpd 15 1  |-  ( A  e.  RR+  ->  ( n  e.  RR+  |->  ( ( log `  n )  /  ( n  ^c  A ) ) )  ~~> r  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826    =/= wne 2577   A.wral 2732   E.wrex 2733    C_ wss 3389   ifcif 3857   class class class wbr 4367    |-> cmpt 4425   ` cfv 5496  (class class class)co 6196   CCcc 9401   RRcr 9402   0cc0 9403   1c1 9404    x. cmul 9408    < clt 9539    <_ cle 9540    / cdiv 10123   RR+crp 11139   abscabs 13069    ~~> r crli 13310   expce 13799   logclog 23027    ^c ccxp 23028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-ioo 11454  df-ioc 11455  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-fl 11828  df-mod 11897  df-seq 12011  df-exp 12070  df-fac 12256  df-bc 12283  df-hash 12308  df-shft 12902  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-limsup 13296  df-clim 13313  df-rlim 13314  df-sum 13511  df-ef 13805  df-sin 13807  df-cos 13808  df-pi 13810  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-hom 14726  df-cco 14727  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-pt 14852  df-prds 14855  df-xrs 14909  df-qtop 14914  df-imas 14915  df-xps 14917  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-mulg 16177  df-cntz 16472  df-cmn 16917  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-fbas 18529  df-fg 18530  df-cnfld 18534  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-cld 19605  df-ntr 19606  df-cls 19607  df-nei 19685  df-lp 19723  df-perf 19724  df-cn 19814  df-cnp 19815  df-haus 19902  df-tx 20148  df-hmeo 20341  df-fil 20432  df-fm 20524  df-flim 20525  df-flf 20526  df-xms 20908  df-ms 20909  df-tms 20910  df-cncf 21467  df-limc 22355  df-dv 22356  df-log 23029  df-cxp 23030
This theorem is referenced by:  cxploglim2  23425  logfacrlim  23616  chtppilimlem2  23776  chpchtlim  23781  dchrvmasumlema  23802  logdivsum  23835
  Copyright terms: Public domain W3C validator