MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpeq Structured version   Unicode version

Theorem cxpeq 23256
Description: Solve an equation involving an  N-th power. The expression  -u 1  ^c  ( 2  /  N )  =  exp ( 2 pi _i 
/  N ) is a way to write the primitive  N-th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
cxpeq  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
( A ^ N
)  =  B  <->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
Distinct variable groups:    A, n    B, n    n, N

Proof of Theorem cxpeq
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpl2 1000 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  N  e.  NN )
2 nnm1nn0 10858 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
31, 2syl 16 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( N  -  1 )  e.  NN0 )
4 nn0uz 11140 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
53, 4syl6eleq 2555 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
6 eluzfz1 11718 . . . . . 6  |-  ( ( N  -  1 )  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... ( N  -  1 ) ) )
75, 6syl 16 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  0  e.  ( 0 ... ( N  -  1 ) ) )
8 neg1cn 10660 . . . . . . . . . 10  |-  -u 1  e.  CC
9 2re 10626 . . . . . . . . . . . 12  |-  2  e.  RR
10 simp2 997 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  N  e.  NN )
11 nndivre 10592 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  N  e.  NN )  ->  ( 2  /  N
)  e.  RR )
129, 10, 11sylancr 663 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
2  /  N )  e.  RR )
1312recnd 9639 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
2  /  N )  e.  CC )
14 cxpcl 23180 . . . . . . . . . 10  |-  ( (
-u 1  e.  CC  /\  ( 2  /  N
)  e.  CC )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
158, 13, 14sylancr 663 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
1615adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
17 0nn0 10831 . . . . . . . 8  |-  0  e.  NN0
18 expcl 12186 . . . . . . . 8  |-  ( ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  0  e. 
NN0 )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 )  e.  CC )
1916, 17, 18sylancl 662 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 )  e.  CC )
2019mul02d 9795 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
0  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ 0 ) )  =  0 )
21 simprl 756 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  A  =  0 )
2221oveq1d 6311 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( A ^ N )  =  ( 0 ^ N
) )
23 simprr 757 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( A ^ N )  =  B )
2410expd 12328 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
0 ^ N )  =  0 )
2522, 23, 243eqtr3d 2506 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  B  =  0 )
2625oveq1d 6311 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( B  ^c  ( 1  /  N ) )  =  ( 0  ^c  ( 1  /  N ) ) )
27 nncn 10564 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
28 nnne0 10589 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
29 reccl 10235 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  N  =/=  0 )  -> 
( 1  /  N
)  e.  CC )
30 recne0 10241 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  N  =/=  0 )  -> 
( 1  /  N
)  =/=  0 )
3129, 300cxpd 23216 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  N  =/=  0 )  -> 
( 0  ^c 
( 1  /  N
) )  =  0 )
3227, 28, 31syl2anc 661 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
0  ^c  ( 1  /  N ) )  =  0 )
331, 32syl 16 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
0  ^c  ( 1  /  N ) )  =  0 )
3426, 33eqtrd 2498 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( B  ^c  ( 1  /  N ) )  =  0 )
3534oveq1d 6311 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 ) )  =  ( 0  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ 0 ) ) )
3620, 35, 213eqtr4rd 2509 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ 0 ) ) )
37 oveq2 6304 . . . . . . . 8  |-  ( n  =  0  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
)  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ 0 ) )
3837oveq2d 6312 . . . . . . 7  |-  ( n  =  0  ->  (
( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) )  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 ) ) )
3938eqeq2d 2471 . . . . . 6  |-  ( n  =  0  ->  ( A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  <->  A  =  (
( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ 0 ) ) ) )
4039rspcev 3210 . . . . 5  |-  ( ( 0  e.  ( 0 ... ( N  - 
1 ) )  /\  A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ 0 ) ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
417, 36, 40syl2anc 661 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
4241expr 615 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =  0
)  ->  ( ( A ^ N )  =  B  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
43 simpl1 999 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  A  e.  CC )
44 simpr 461 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  A  =/=  0 )
45 simpl2 1000 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  NN )
4645nnzd 10989 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  ZZ )
47 explog 23103 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  N  e.  ZZ )  ->  ( A ^ N )  =  ( exp `  ( N  x.  ( log `  A ) ) ) )
4843, 44, 46, 47syl3anc 1228 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( A ^ N )  =  ( exp `  ( N  x.  ( log `  A
) ) ) )
4948eqcomd 2465 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( exp `  ( N  x.  ( log `  A ) ) )  =  ( A ^ N ) )
5010nncnd 10572 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  N  e.  CC )
5150adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  CC )
5243, 44logcld 23083 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( log `  A )  e.  CC )
5351, 52mulcld 9633 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( N  x.  ( log `  A
) )  e.  CC )
5445nnnn0d 10873 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  NN0 )
5543, 54expcld 12312 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( A ^ N )  e.  CC )
5643, 44, 46expne0d 12318 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( A ^ N )  =/=  0
)
57 eflogeq 23111 . . . . . . 7  |-  ( ( ( N  x.  ( log `  A ) )  e.  CC  /\  ( A ^ N )  e.  CC  /\  ( A ^ N )  =/=  0 )  ->  (
( exp `  ( N  x.  ( log `  A ) ) )  =  ( A ^ N )  <->  E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) ) ) )
5853, 55, 56, 57syl3anc 1228 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( ( exp `  ( N  x.  ( log `  A ) ) )  =  ( A ^ N )  <->  E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) ) ) )
5949, 58mpbid 210 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) ) )
6055, 56logcld 23083 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( log `  ( A ^ N
) )  e.  CC )
6160adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( log `  ( A ^ N ) )  e.  CC )
62 ax-icn 9568 . . . . . . . . . . 11  |-  _i  e.  CC
63 2cn 10627 . . . . . . . . . . . 12  |-  2  e.  CC
64 picn 22977 . . . . . . . . . . . 12  |-  pi  e.  CC
6563, 64mulcli 9618 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  CC
6662, 65mulcli 9618 . . . . . . . . . 10  |-  ( _i  x.  ( 2  x.  pi ) )  e.  CC
67 zcn 10890 . . . . . . . . . . 11  |-  ( m  e.  ZZ  ->  m  e.  CC )
6867adantl 466 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  m  e.  CC )
69 mulcl 9593 . . . . . . . . . 10  |-  ( ( ( _i  x.  (
2  x.  pi ) )  e.  CC  /\  m  e.  CC )  ->  ( ( _i  x.  ( 2  x.  pi ) )  x.  m
)  e.  CC )
7066, 68, 69sylancr 663 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( _i  x.  (
2  x.  pi ) )  x.  m )  e.  CC )
7161, 70addcld 9632 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  e.  CC )
7251adantr 465 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  CC )
7352adantr 465 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( log `  A )  e.  CC )
7410nnne0d 10601 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  N  =/=  0 )
7574ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  =/=  0 )
7671, 72, 73, 75divmuld 10363 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) )  /  N )  =  ( log `  A
)  <->  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) ) ) )
77 fveq2 5872 . . . . . . . 8  |-  ( ( ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N )  =  ( log `  A )  ->  ( exp `  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  ( log `  A ) ) )
7872, 75reccld 10334 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
1  /  N )  e.  CC )
7978, 61mulcld 9633 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( 1  /  N
)  x.  ( log `  ( A ^ N
) ) )  e.  CC )
8013ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
2  /  N )  e.  CC )
8180, 68mulcld 9633 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( 2  /  N
)  x.  m )  e.  CC )
8262, 64mulcli 9618 . . . . . . . . . . . . 13  |-  ( _i  x.  pi )  e.  CC
83 mulcl 9593 . . . . . . . . . . . . 13  |-  ( ( ( ( 2  /  N )  x.  m
)  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
)  e.  CC )
8481, 82, 83sylancl 662 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) )  e.  CC )
85 efadd 13840 . . . . . . . . . . . 12  |-  ( ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  e.  CC  /\  (
( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) )  e.  CC )  -> 
( exp `  (
( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) )  =  ( ( exp `  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) )  x.  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) ) )
8679, 84, 85syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N
)  x.  m )  x.  ( _i  x.  pi ) ) ) )  =  ( ( exp `  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) )  x.  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) ) )
8761, 70, 72, 75divdird 10379 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N )  =  ( ( ( log `  ( A ^ N ) )  /  N )  +  ( ( ( _i  x.  ( 2  x.  pi ) )  x.  m )  /  N
) ) )
8861, 72, 75divrec2d 10345 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( log `  ( A ^ N ) )  /  N )  =  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) )
8966a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
_i  x.  ( 2  x.  pi ) )  e.  CC )
9089, 68, 72, 75div23d 10378 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( _i  x.  ( 2  x.  pi ) )  x.  m
)  /  N )  =  ( ( ( _i  x.  ( 2  x.  pi ) )  /  N )  x.  m ) )
9162, 63, 64mul12i 9792 . . . . . . . . . . . . . . . . . 18  |-  ( _i  x.  ( 2  x.  pi ) )  =  ( 2  x.  (
_i  x.  pi )
)
9291oveq1i 6306 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  ( 2  x.  pi ) )  /  N )  =  ( ( 2  x.  ( _i  x.  pi ) )  /  N
)
9363a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  2  e.  CC )
9482a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
_i  x.  pi )  e.  CC )
9593, 94, 72, 75div23d 10378 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( 2  x.  (
_i  x.  pi )
)  /  N )  =  ( ( 2  /  N )  x.  ( _i  x.  pi ) ) )
9692, 95syl5eq 2510 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( _i  x.  (
2  x.  pi ) )  /  N )  =  ( ( 2  /  N )  x.  ( _i  x.  pi ) ) )
9796oveq1d 6311 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( _i  x.  ( 2  x.  pi ) )  /  N
)  x.  m )  =  ( ( ( 2  /  N )  x.  ( _i  x.  pi ) )  x.  m
) )
9880, 94, 68mul32d 9807 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( 2  /  N )  x.  (
_i  x.  pi )
)  x.  m )  =  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) )
9990, 97, 983eqtrd 2502 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( _i  x.  ( 2  x.  pi ) )  x.  m
)  /  N )  =  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) )
10088, 99oveq12d 6314 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( log `  ( A ^ N ) )  /  N )  +  ( ( ( _i  x.  ( 2  x.  pi ) )  x.  m )  /  N
) )  =  ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) )
10187, 100eqtrd 2498 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N )  =  ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) )
102101fveq2d 5876 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  (
( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) ) )
10355adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( A ^ N )  e.  CC )
10456adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( A ^ N )  =/=  0 )
105103, 104, 78cxpefd 23218 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( A ^ N
)  ^c  ( 1  /  N ) )  =  ( exp `  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) ) )
1068a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  -u 1  e.  CC )
107 neg1ne0 10662 . . . . . . . . . . . . . . 15  |-  -u 1  =/=  0
108107a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  -u 1  =/=  0 )
109 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
110106, 108, 80, 109cxpmul2zd 23222 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( ( 2  /  N
)  x.  m ) )  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ m
) )
111106, 108, 81cxpefd 23218 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( ( 2  /  N
)  x.  m ) )  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  ( log `  -u 1 ) ) ) )
112 logm1 23098 . . . . . . . . . . . . . . . 16  |-  ( log `  -u 1 )  =  ( _i  x.  pi )
113112oveq2i 6307 . . . . . . . . . . . . . . 15  |-  ( ( ( 2  /  N
)  x.  m )  x.  ( log `  -u 1
) )  =  ( ( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) )
114113fveq2i 5875 . . . . . . . . . . . . . 14  |-  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  ( log `  -u 1 ) ) )  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) )
115111, 114syl6eq 2514 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( ( 2  /  N
)  x.  m ) )  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) )
116106, 80cxpcld 23214 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
1178a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  -u 1  e.  CC )
118107a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  -u 1  =/=  0 )
119117, 118, 13cxpne0d 23219 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( -u 1  ^c  ( 2  /  N ) )  =/=  0 )
120119ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^c  ( 2  /  N ) )  =/=  0 )
121116, 120, 109expclzd 12317 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ m
)  e.  CC )
12245adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  NN )
123109, 122zmodcld 12018 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  NN0 )
124116, 123expcld 12312 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
)  e.  CC )
125123nn0zd 10988 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  ZZ )
126116, 120, 125expne0d 12318 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
)  =/=  0 )
127116, 120, 125, 109expsubd 12323 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  -  ( m  mod  N ) ) )  =  ( ( ( -u 1  ^c  ( 2  /  N ) ) ^
m )  /  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
) ) )
128122nnzd 10989 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  ZZ )
129 zre 10889 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ZZ  ->  m  e.  RR )
130129adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  m  e.  RR )
131122nnrpd 11280 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  RR+ )
132 moddifz 12010 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  RR  /\  N  e.  RR+ )  -> 
( ( m  -  ( m  mod  N ) )  /  N )  e.  ZZ )
133130, 131, 132syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( m  -  (
m  mod  N )
)  /  N )  e.  ZZ )
134 expmulz 12214 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  ( -u 1  ^c  ( 2  /  N ) )  =/=  0 )  /\  ( N  e.  ZZ  /\  ( ( m  -  ( m  mod  N ) )  /  N )  e.  ZZ ) )  -> 
( ( -u 1  ^c  ( 2  /  N ) ) ^ ( N  x.  ( ( m  -  ( m  mod  N ) )  /  N ) ) )  =  ( ( ( -u 1  ^c  ( 2  /  N ) ) ^ N ) ^
( ( m  -  ( m  mod  N ) )  /  N ) ) )
135116, 120, 128, 133, 134syl22anc 1229 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ ( N  x.  ( (
m  -  ( m  mod  N ) )  /  N ) ) )  =  ( ( ( -u 1  ^c  ( 2  /  N ) ) ^ N ) ^ (
( m  -  (
m  mod  N )
)  /  N ) ) )
136123nn0cnd 10875 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  CC )
13768, 136subcld 9950 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  -  ( m  mod  N ) )  e.  CC )
138137, 72, 75divcan2d 10343 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( N  x.  ( (
m  -  ( m  mod  N ) )  /  N ) )  =  ( m  -  ( m  mod  N ) ) )
139138oveq2d 6312 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ ( N  x.  ( (
m  -  ( m  mod  N ) )  /  N ) ) )  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ (
m  -  ( m  mod  N ) ) ) )
140 root1id 23253 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ N
)  =  1 )
141122, 140syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ N
)  =  1 )
142141oveq1d 6311 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( -u 1  ^c  ( 2  /  N ) ) ^ N ) ^
( ( m  -  ( m  mod  N ) )  /  N ) )  =  ( 1 ^ ( ( m  -  ( m  mod  N ) )  /  N
) ) )
143 1exp 12197 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( m  -  (
m  mod  N )
)  /  N )  e.  ZZ  ->  (
1 ^ ( ( m  -  ( m  mod  N ) )  /  N ) )  =  1 )
144133, 143syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
1 ^ ( ( m  -  ( m  mod  N ) )  /  N ) )  =  1 )
145142, 144eqtrd 2498 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( -u 1  ^c  ( 2  /  N ) ) ^ N ) ^
( ( m  -  ( m  mod  N ) )  /  N ) )  =  1 )
146135, 139, 1453eqtr3d 2506 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  -  ( m  mod  N ) ) )  =  1 )
147127, 146eqtr3d 2500 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( -u 1  ^c  ( 2  /  N ) ) ^ m )  / 
( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  1 )
148121, 124, 126, 147diveq1d 10349 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ m
)  =  ( (
-u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
) )
149110, 115, 1483eqtr3rd 2507 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
)  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) )
150105, 149oveq12d 6314 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
) )  =  ( ( exp `  (
( 1  /  N
)  x.  ( log `  ( A ^ N
) ) ) )  x.  ( exp `  (
( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) ) ) ) )
15186, 102, 1503eqtr4d 2508 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) ) )
152 eflog 23089 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  A ) )  =  A )
15343, 44, 152syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( exp `  ( log `  A
) )  =  A )
154153adantr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( log `  A
) )  =  A )
155151, 154eqeq12d 2479 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( exp `  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  ( log `  A ) )  <-> 
( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A ) )
156 zmodfz 12019 . . . . . . . . . . 11  |-  ( ( m  e.  ZZ  /\  N  e.  NN )  ->  ( m  mod  N
)  e.  ( 0 ... ( N  - 
1 ) ) )
157109, 122, 156syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  ( 0 ... ( N  -  1 ) ) )
158 eqcom 2466 . . . . . . . . . . . . 13  |-  ( A  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  <->  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  =  A )
159 oveq2 6304 . . . . . . . . . . . . . . 15  |-  ( n  =  ( m  mod  N )  ->  ( ( -u 1  ^c  ( 2  /  N ) ) ^ n )  =  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )
160159oveq2d 6312 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  mod  N )  ->  ( (
( A ^ N
)  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) )  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ (
m  mod  N )
) ) )
161160eqeq1d 2459 . . . . . . . . . . . . 13  |-  ( n  =  ( m  mod  N )  ->  ( (
( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) )  =  A  <-> 
( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A ) )
162158, 161syl5bb 257 . . . . . . . . . . . 12  |-  ( n  =  ( m  mod  N )  ->  ( A  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  <->  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A ) )
163162rspcev 3210 . . . . . . . . . . 11  |-  ( ( ( m  mod  N
)  e.  ( 0 ... ( N  - 
1 ) )  /\  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
164163ex 434 . . . . . . . . . 10  |-  ( ( m  mod  N )  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
165157, 164syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
166155, 165sylbid 215 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( exp `  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  ( log `  A ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N
)  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
16777, 166syl5 32 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) )  /  N )  =  ( log `  A
)  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
16876, 167sylbird 235 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
169168rexlimdva 2949 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  ->  E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) ) ) )
17059, 169mpd 15 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
171 oveq1 6303 . . . . . . 7  |-  ( ( A ^ N )  =  B  ->  (
( A ^ N
)  ^c  ( 1  /  N ) )  =  ( B  ^c  ( 1  /  N ) ) )
172171oveq1d 6311 . . . . . 6  |-  ( ( A ^ N )  =  B  ->  (
( ( A ^ N )  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) )  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) )
173172eqeq2d 2471 . . . . 5  |-  ( ( A ^ N )  =  B  ->  ( A  =  ( (
( A ^ N
)  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) )  <->  A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ n ) ) ) )
174173rexbidv 2968 . . . 4  |-  ( ( A ^ N )  =  B  ->  ( E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( ( A ^ N )  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  <->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
175170, 174syl5ibcom 220 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( ( A ^ N )  =  B  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
17642, 175pm2.61dane 2775 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
( A ^ N
)  =  B  ->  E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) ) ) )
177 simp3 998 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  B  e.  CC )
178 nnrecre 10593 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  N )  e.  RR )
1791783ad2ant2 1018 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
1  /  N )  e.  RR )
180179recnd 9639 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
1  /  N )  e.  CC )
181177, 180cxpcld 23214 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( B  ^c  ( 1  /  N ) )  e.  CC )
182181adantr 465 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( B  ^c  ( 1  /  N ) )  e.  CC )
183 elfznn0 11796 . . . . . . 7  |-  ( n  e.  ( 0 ... ( N  -  1 ) )  ->  n  e.  NN0 )
184 expcl 12186 . . . . . . 7  |-  ( ( ( -u 1  ^c  ( 2  /  N ) )  e.  CC  /\  n  e. 
NN0 )  ->  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
)  e.  CC )
18515, 183, 184syl2an 477 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n )  e.  CC )
18610adantr 465 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  N  e.  NN )
187186nnnn0d 10873 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  N  e.  NN0 )
188182, 185, 187mulexpd 12327 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( ( B  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ^ N
)  =  ( ( ( B  ^c 
( 1  /  N
) ) ^ N
)  x.  ( ( ( -u 1  ^c  ( 2  /  N ) ) ^
n ) ^ N
) ) )
189177adantr 465 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  B  e.  CC )
190 cxproot 23196 . . . . . . 7  |-  ( ( B  e.  CC  /\  N  e.  NN )  ->  ( ( B  ^c  ( 1  /  N ) ) ^ N )  =  B )
191189, 186, 190syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( B  ^c  ( 1  /  N ) ) ^ N )  =  B )
192183adantl 466 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  n  e.  NN0 )
193192nn0cnd 10875 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  n  e.  CC )
194186nncnd 10572 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  N  e.  CC )
195193, 194mulcomd 9634 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( n  x.  N )  =  ( N  x.  n ) )
196195oveq2d 6312 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( n  x.  N ) )  =  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( N  x.  n ) ) )
19715adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( -u 1  ^c  ( 2  /  N ) )  e.  CC )
198197, 187, 192expmuld 12315 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( n  x.  N ) )  =  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ^ N ) )
199197, 192, 187expmuld 12315 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ ( N  x.  n ) )  =  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ N
) ^ n ) )
200196, 198, 1993eqtr3d 2506 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ^ N )  =  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ N
) ^ n ) )
201186, 140syl 16 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^c  ( 2  /  N ) ) ^ N )  =  1 )
202201oveq1d 6311 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ N
) ^ n )  =  ( 1 ^ n ) )
203 elfzelz 11713 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( N  -  1 ) )  ->  n  e.  ZZ )
204203adantl 466 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  n  e.  ZZ )
205 1exp 12197 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
206204, 205syl 16 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( 1 ^ n )  =  1 )
207200, 202, 2063eqtrd 2502 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ^ N )  =  1 )
208191, 207oveq12d 6314 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( ( B  ^c  ( 1  /  N ) ) ^ N )  x.  ( ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ^ N ) )  =  ( B  x.  1 ) )
209189mulid1d 9630 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( B  x.  1 )  =  B )
210188, 208, 2093eqtrd 2502 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( ( B  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ^ N
)  =  B )
211 oveq1 6303 . . . . 5  |-  ( A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  ->  ( A ^ N )  =  ( ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ n ) ) ^ N ) )
212211eqeq1d 2459 . . . 4  |-  ( A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  ->  ( ( A ^ N )  =  B  <->  ( ( ( B  ^c  ( 1  /  N ) )  x.  ( (
-u 1  ^c 
( 2  /  N
) ) ^ n
) ) ^ N
)  =  B ) )
213210, 212syl5ibrcom 222 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u 1  ^c  ( 2  /  N ) ) ^ n ) )  ->  ( A ^ N )  =  B ) )
214213rexlimdva 2949 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( B  ^c  ( 1  /  N ) )  x.  ( ( -u
1  ^c  ( 2  /  N ) ) ^ n ) )  ->  ( A ^ N )  =  B ) )
215176, 214impbid 191 1  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
( A ^ N
)  =  B  <->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^c 
( 1  /  N
) )  x.  (
( -u 1  ^c 
( 2  /  N
) ) ^ n
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510   _ici 9511    + caddc 9512    x. cmul 9514    - cmin 9824   -ucneg 9825    / cdiv 10227   NNcn 10556   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   ...cfz 11697    mod cmo 11998   ^cexp 12168   expce 13808   picpi 13813   logclog 23067    ^c ccxp 23068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11821  df-fl 11931  df-mod 11999  df-seq 12110  df-exp 12169  df-fac 12356  df-bc 12383  df-hash 12408  df-shft 12911  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-limsup 13305  df-clim 13322  df-rlim 13323  df-sum 13520  df-ef 13814  df-sin 13816  df-cos 13817  df-pi 13819  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-hom 14735  df-cco 14736  df-rest 14839  df-topn 14840  df-0g 14858  df-gsum 14859  df-topgen 14860  df-pt 14861  df-prds 14864  df-xrs 14918  df-qtop 14923  df-imas 14924  df-xps 14926  df-mre 15002  df-mrc 15003  df-acs 15005  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-mulg 16186  df-cntz 16481  df-cmn 16926  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-fbas 18542  df-fg 18543  df-cnfld 18547  df-top 19525  df-bases 19527  df-topon 19528  df-topsp 19529  df-cld 19646  df-ntr 19647  df-cls 19648  df-nei 19725  df-lp 19763  df-perf 19764  df-cn 19854  df-cnp 19855  df-haus 19942  df-tx 20188  df-hmeo 20381  df-fil 20472  df-fm 20564  df-flim 20565  df-flf 20566  df-xms 20948  df-ms 20949  df-tms 20950  df-cncf 21507  df-limc 22395  df-dv 22396  df-log 23069  df-cxp 23070
This theorem is referenced by:  1cubr  23298
  Copyright terms: Public domain W3C validator