MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3lem Unicode version

Theorem cxpcn3lem 20584
Description: Lemma for cxpcn3 20585. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d  |-  D  =  ( `' Re " RR+ )
cxpcn3.j  |-  J  =  ( TopOpen ` fld )
cxpcn3.k  |-  K  =  ( Jt  ( 0 [,) 
+oo ) )
cxpcn3.l  |-  L  =  ( Jt  D )
cxpcn3.u  |-  U  =  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )
cxpcn3.t  |-  T  =  if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )
Assertion
Ref Expression
cxpcn3lem  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
Distinct variable groups:    a, b,
d, A    E, a,
b, d    J, d    K, a, b, d    D, a, b, d    L, a, b, d    T, a, b, d
Allowed substitution hints:    U( a, b, d)    J( a, b)

Proof of Theorem cxpcn3lem
StepHypRef Expression
1 cxpcn3.t . . 3  |-  T  =  if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )
2 cxpcn3.u . . . . 5  |-  U  =  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )
3 cxpcn3.d . . . . . . . . . . 11  |-  D  =  ( `' Re " RR+ )
43eleq2i 2468 . . . . . . . . . 10  |-  ( A  e.  D  <->  A  e.  ( `' Re " RR+ )
)
5 ref 11872 . . . . . . . . . . 11  |-  Re : CC
--> RR
6 ffn 5550 . . . . . . . . . . 11  |-  ( Re : CC --> RR  ->  Re  Fn  CC )
7 elpreima 5809 . . . . . . . . . . 11  |-  ( Re  Fn  CC  ->  ( A  e.  ( `' Re " RR+ )  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) ) )
85, 6, 7mp2b 10 . . . . . . . . . 10  |-  ( A  e.  ( `' Re "
RR+ )  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) )
94, 8bitri 241 . . . . . . . . 9  |-  ( A  e.  D  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) )
109simprbi 451 . . . . . . . 8  |-  ( A  e.  D  ->  (
Re `  A )  e.  RR+ )
1110adantr 452 . . . . . . 7  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( Re `  A
)  e.  RR+ )
12 1rp 10572 . . . . . . 7  |-  1  e.  RR+
13 ifcl 3735 . . . . . . 7  |-  ( ( ( Re `  A
)  e.  RR+  /\  1  e.  RR+ )  ->  if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  e.  RR+ )
1411, 12, 13sylancl 644 . . . . . 6  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  e.  RR+ )
1514rphalfcld 10616 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )  e.  RR+ )
162, 15syl5eqel 2488 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  U  e.  RR+ )
17 simpr 448 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E  e.  RR+ )
1816rpreccld 10614 . . . . . 6  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( 1  /  U
)  e.  RR+ )
1918rpred 10604 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( 1  /  U
)  e.  RR )
2017, 19rpcxpcld 20574 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( E  ^ c 
( 1  /  U
) )  e.  RR+ )
21 ifcl 3735 . . . 4  |-  ( ( U  e.  RR+  /\  ( E  ^ c  ( 1  /  U ) )  e.  RR+ )  ->  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  e.  RR+ )
2216, 20, 21syl2anc 643 . . 3  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  e.  RR+ )
231, 22syl5eqel 2488 . 2  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  T  e.  RR+ )
24 elrege0 10963 . . . 4  |-  ( a  e.  ( 0 [,) 
+oo )  <->  ( a  e.  RR  /\  0  <_ 
a ) )
25 0re 9047 . . . . . . . 8  |-  0  e.  RR
2625a1i 11 . . . . . . 7  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
0  e.  RR )
27 leloe 9117 . . . . . . 7  |-  ( ( 0  e.  RR  /\  a  e.  RR )  ->  ( 0  <_  a  <->  ( 0  <  a  \/  0  =  a ) ) )
2826, 27sylan 458 . . . . . 6  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  <_ 
a  <->  ( 0  < 
a  \/  0  =  a ) ) )
29 elrp 10570 . . . . . . . . 9  |-  ( a  e.  RR+  <->  ( a  e.  RR  /\  0  < 
a ) )
30 simp2l 983 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  RR+ )
31 simp2r 984 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  b  e.  D )
32 cnvimass 5183 . . . . . . . . . . . . . . . . . 18  |-  ( `' Re " RR+ )  C_ 
dom  Re
335fdmi 5555 . . . . . . . . . . . . . . . . . 18  |-  dom  Re  =  CC
3432, 33sseqtri 3340 . . . . . . . . . . . . . . . . 17  |-  ( `' Re " RR+ )  C_  CC
353, 34eqsstri 3338 . . . . . . . . . . . . . . . 16  |-  D  C_  CC
3635sseli 3304 . . . . . . . . . . . . . . 15  |-  ( b  e.  D  ->  b  e.  CC )
3731, 36syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  b  e.  CC )
38 abscxp 20536 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  CC )  ->  ( abs `  ( a  ^ c  b ) )  =  ( a  ^ c  ( Re `  b ) ) )
3930, 37, 38syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( a  ^ c 
b ) )  =  ( a  ^ c 
( Re `  b
) ) )
4037recld 11954 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  b )  e.  RR )
4130, 40rpcxpcld 20574 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  e.  RR+ )
4241rpred 10604 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  e.  RR )
43163ad2ant1 978 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  e.  RR+ )
4443rpred 10604 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  e.  RR )
4530, 44rpcxpcld 20574 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  U )  e.  RR+ )
4645rpred 10604 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  U )  e.  RR )
47 simp1r 982 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  E  e.  RR+ )
4847rpred 10604 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  E  e.  RR )
49 simp1l 981 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  A  e.  D )
509simplbi 447 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  D  ->  A  e.  CC )
5149, 50syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  A  e.  CC )
5251recld 11954 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  e.  RR )
5352rehalfcld 10170 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  /  2 )  e.  RR )
54 1re 9046 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
55 min1 10732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( Re `  A
)  e.  RR  /\  1  e.  RR )  ->  if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  <_  (
Re `  A )
)
5652, 54, 55sylancl 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  <_  ( Re `  A ) )
57143ad2ant1 978 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  e.  RR+ )
5857rpred 10604 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  e.  RR )
59 2re 10025 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  RR
6059a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  2  e.  RR )
61 2pos 10038 . . . . . . . . . . . . . . . . . . . 20  |-  0  <  2
6261a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  0  <  2 )
63 lediv1 9831 . . . . . . . . . . . . . . . . . . 19  |-  ( ( if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  e.  RR  /\  ( Re `  A
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  ( Re `  A )  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) ) )
6458, 52, 60, 62, 63syl112anc 1188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  ( Re `  A )  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) ) )
6556, 64mpbid 202 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) )
662, 65syl5eqbr 4205 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <_  ( ( Re `  A
)  /  2 ) )
6752recnd 9070 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  e.  CC )
68672halvesd 10169 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  =  ( Re `  A
) )
6951, 37resubd 11976 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  =  ( ( Re `  A
)  -  ( Re
`  b ) ) )
7051, 37subcld 9367 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( A  -  b )  e.  CC )
7170recld 11954 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  e.  RR )
7270abscld 12193 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  e.  RR )
7370releabsd 12208 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <_  ( abs `  ( A  -  b ) ) )
74 simp3r 986 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  T
)
7574, 1syl6breq 4211 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) ) )
76203ad2ant1 978 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  ^ c  ( 1  /  U ) )  e.  RR+ )
7776rpred 10604 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  ^ c  ( 1  /  U ) )  e.  RR )
78 ltmin 10737 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( abs `  ( A  -  b )
)  e.  RR  /\  U  e.  RR  /\  ( E  ^ c  ( 1  /  U ) )  e.  RR )  -> 
( ( abs `  ( A  -  b )
)  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <->  ( ( abs `  ( A  -  b
) )  <  U  /\  ( abs `  ( A  -  b )
)  <  ( E  ^ c  ( 1  /  U ) ) ) ) )
7972, 44, 77, 78syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( ( abs `  ( A  -  b ) )  < 
if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <-> 
( ( abs `  ( A  -  b )
)  <  U  /\  ( abs `  ( A  -  b ) )  <  ( E  ^ c  ( 1  /  U ) ) ) ) )
8075, 79mpbid 202 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( ( abs `  ( A  -  b ) )  < 
U  /\  ( abs `  ( A  -  b
) )  <  ( E  ^ c  ( 1  /  U ) ) ) )
8180simpld 446 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  U
)
8271, 72, 44, 73, 81lelttrd 9184 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <  U
)
8371, 44, 53, 82, 66ltletrd 9186 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <  (
( Re `  A
)  /  2 ) )
8469, 83eqbrtrrd 4194 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  -  ( Re `  b ) )  < 
( ( Re `  A )  /  2
) )
8552, 40, 53ltsubadd2d 9580 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  -  ( Re
`  b ) )  <  ( ( Re
`  A )  / 
2 )  <->  ( Re `  A )  <  (
( Re `  b
)  +  ( ( Re `  A )  /  2 ) ) ) )
8684, 85mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  <  (
( Re `  b
)  +  ( ( Re `  A )  /  2 ) ) )
8768, 86eqbrtrd 4192 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  < 
( ( Re `  b )  +  ( ( Re `  A
)  /  2 ) ) )
8853, 40, 53ltadd1d 9575 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  <  ( Re `  b )  <->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  < 
( ( Re `  b )  +  ( ( Re `  A
)  /  2 ) ) ) )
8987, 88mpbird 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  /  2 )  < 
( Re `  b
) )
9044, 53, 40, 66, 89lelttrd 9184 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <  ( Re `  b ) )
9130rpred 10604 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  RR )
9254a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  1  e.  RR )
9330rprege0d 10611 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  e.  RR  /\  0  <_ 
a ) )
94 absid 12056 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  RR  /\  0  <_  a )  -> 
( abs `  a
)  =  a )
9593, 94syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  a )  =  a )
96 simp3l 985 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  a )  <  T
)
9795, 96eqbrtrrd 4194 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  T )
9897, 1syl6breq 4211 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) ) )
99 ltmin 10737 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  RR  /\  U  e.  RR  /\  ( E  ^ c  ( 1  /  U ) )  e.  RR )  -> 
( a  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <->  ( a  <  U  /\  a  < 
( E  ^ c 
( 1  /  U
) ) ) ) )
10091, 44, 77, 99syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  <  if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <-> 
( a  <  U  /\  a  <  ( E  ^ c  ( 1  /  U ) ) ) ) )
10198, 100mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  <  U  /\  a  < 
( E  ^ c 
( 1  /  U
) ) ) )
102101simpld 446 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  U )
103 rehalfcl 10150 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
10454, 103mp1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  2 )  e.  RR )
105 min2 10733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Re `  A
)  e.  RR  /\  1  e.  RR )  ->  if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  <_  1
)
10652, 54, 105sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  <_  1 )
107 lediv1 9831 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  e.  RR  /\  1  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  1  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) ) )
10858, 92, 60, 62, 107syl112anc 1188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  1  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) ) )
109106, 108mpbid 202 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) )
1102, 109syl5eqbr 4205 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <_  ( 1  /  2 ) )
111 halflt1 10145 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  /  2 )  <  1
112111a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  2 )  <  1 )
11344, 104, 92, 110, 112lelttrd 9184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <  1 )
11491, 44, 92, 102, 113lttrd 9187 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  1 )
11530, 44, 114, 40cxplt3d 20576 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  <  ( Re `  b
)  <->  ( a  ^ c  ( Re `  b ) )  < 
( a  ^ c  U ) ) )
11690, 115mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  < 
( a  ^ c  U ) )
11743rpcnne0d 10613 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  e.  CC  /\  U  =/=  0 ) )
118 recid 9648 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  CC  /\  U  =/=  0 )  -> 
( U  x.  (
1  /  U ) )  =  1 )
119117, 118syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  x.  ( 1  /  U
) )  =  1 )
120119oveq2d 6056 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( U  x.  ( 1  /  U
) ) )  =  ( a  ^ c 
1 ) )
12143rpreccld 10614 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  U )  e.  RR+ )
122121rpcnd 10606 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  U )  e.  CC )
12330, 44, 122cxpmuld 20578 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( U  x.  ( 1  /  U
) ) )  =  ( ( a  ^ c  U )  ^ c 
( 1  /  U
) ) )
12430rpcnd 10606 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  CC )
125124cxp1d 20550 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  1 )  =  a )
126120, 123, 1253eqtr3d 2444 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  ^ c  ( 1  /  U ) )  =  a )
127101simprd 450 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  ( E  ^ c  ( 1  /  U ) ) )
128126, 127eqbrtrd 4192 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  ^ c  ( 1  /  U ) )  <  ( E  ^ c  ( 1  /  U ) ) )
12945rprege0d 10611 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  e.  RR  /\  0  <_  ( a  ^ c  U ) ) )
13047rprege0d 10611 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  e.  RR  /\  0  <_  E ) )
131 cxplt2 20542 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  ^ c  U )  e.  RR  /\  0  <_  ( a  ^ c  U )
)  /\  ( E  e.  RR  /\  0  <_  E )  /\  (
1  /  U )  e.  RR+ )  ->  (
( a  ^ c  U )  <  E  <->  ( ( a  ^ c  U )  ^ c 
( 1  /  U
) )  <  ( E  ^ c  ( 1  /  U ) ) ) )
132129, 130, 121, 131syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  <  E  <->  ( (
a  ^ c  U
)  ^ c  ( 1  /  U ) )  <  ( E  ^ c  ( 1  /  U ) ) ) )
133128, 132mpbird 224 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  U )  <  E )
13442, 46, 48, 116, 133lttrd 9187 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  < 
E )
13539, 134eqbrtrd 4192 . . . . . . . . . . . 12  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( a  ^ c 
b ) )  < 
E )
1361353expia 1155 . . . . . . . . . . 11  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D ) )  ->  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
137136anassrs 630 . . . . . . . . . 10  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR+ )  /\  b  e.  D )  ->  (
( ( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
138137ralrimiva 2749 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR+ )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
13929, 138sylan2br 463 . . . . . . . 8  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR  /\  0  <  a ) )  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
140139expr 599 . . . . . . 7  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  < 
a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
141 elpreima 5809 . . . . . . . . . . . . . . . . . . 19  |-  ( Re  Fn  CC  ->  (
b  e.  ( `' Re " RR+ )  <->  ( b  e.  CC  /\  ( Re `  b )  e.  RR+ ) ) )
1425, 6, 141mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  ( `' Re "
RR+ )  <->  ( b  e.  CC  /\  ( Re
`  b )  e.  RR+ ) )
143142simprbi 451 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( `' Re "
RR+ )  ->  (
Re `  b )  e.  RR+ )
144143, 3eleq2s 2496 . . . . . . . . . . . . . . . 16  |-  ( b  e.  D  ->  (
Re `  b )  e.  RR+ )
145144rpne0d 10609 . . . . . . . . . . . . . . 15  |-  ( b  e.  D  ->  (
Re `  b )  =/=  0 )
146 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( b  =  0  ->  (
Re `  b )  =  ( Re ` 
0 ) )
147 re0 11912 . . . . . . . . . . . . . . . . 17  |-  ( Re
`  0 )  =  0
148146, 147syl6eq 2452 . . . . . . . . . . . . . . . 16  |-  ( b  =  0  ->  (
Re `  b )  =  0 )
149148necon3i 2606 . . . . . . . . . . . . . . 15  |-  ( ( Re `  b )  =/=  0  ->  b  =/=  0 )
150145, 149syl 16 . . . . . . . . . . . . . 14  |-  ( b  e.  D  ->  b  =/=  0 )
15136, 1500cxpd 20554 . . . . . . . . . . . . 13  |-  ( b  e.  D  ->  (
0  ^ c  b )  =  0 )
152151adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  ^ c  b )  =  0 )
153152abs00bd 12051 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  ( abs `  ( 0  ^ c  b ) )  =  0 )
154 simpllr 736 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  E  e.  RR+ )
155154rpgt0d 10607 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  0  <  E )
156153, 155eqbrtrd 4192 . . . . . . . . . 10  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  ( abs `  ( 0  ^ c  b ) )  <  E )
157 oveq1 6047 . . . . . . . . . . . 12  |-  ( 0  =  a  ->  (
0  ^ c  b )  =  ( a  ^ c  b ) )
158157fveq2d 5691 . . . . . . . . . . 11  |-  ( 0  =  a  ->  ( abs `  ( 0  ^ c  b ) )  =  ( abs `  (
a  ^ c  b ) ) )
159158breq1d 4182 . . . . . . . . . 10  |-  ( 0  =  a  ->  (
( abs `  (
0  ^ c  b ) )  <  E  <->  ( abs `  ( a  ^ c  b ) )  <  E ) )
160156, 159syl5ibcom 212 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  =  a  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
161160a1dd 44 . . . . . . . 8  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  =  a  -> 
( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
162161ralrimdva 2756 . . . . . . 7  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  =  a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
163140, 162jaod 370 . . . . . 6  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( ( 0  <  a  \/  0  =  a )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
16428, 163sylbid 207 . . . . 5  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  <_ 
a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
165164expimpd 587 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( ( a  e.  RR  /\  0  <_ 
a )  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
16624, 165syl5bi 209 . . 3  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( a  e.  ( 0 [,)  +oo )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
167166ralrimiv 2748 . 2  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  A. a  e.  (
0 [,)  +oo ) A. b  e.  D  (
( ( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
168 breq2 4176 . . . . . 6  |-  ( d  =  T  ->  (
( abs `  a
)  <  d  <->  ( abs `  a )  <  T
) )
169 breq2 4176 . . . . . 6  |-  ( d  =  T  ->  (
( abs `  ( A  -  b )
)  <  d  <->  ( abs `  ( A  -  b
) )  <  T
) )
170168, 169anbi12d 692 . . . . 5  |-  ( d  =  T  ->  (
( ( abs `  a
)  <  d  /\  ( abs `  ( A  -  b ) )  <  d )  <->  ( ( abs `  a )  < 
T  /\  ( abs `  ( A  -  b
) )  <  T
) ) )
171170imbi1d 309 . . . 4  |-  ( d  =  T  ->  (
( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
)  <->  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b ) )  < 
T )  ->  ( abs `  ( a  ^ c  b ) )  <  E ) ) )
1721712ralbidv 2708 . . 3  |-  ( d  =  T  ->  ( A. a  e.  (
0 [,)  +oo ) A. b  e.  D  (
( ( abs `  a
)  <  d  /\  ( abs `  ( A  -  b ) )  <  d )  -> 
( abs `  (
a  ^ c  b ) )  <  E
)  <->  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
173172rspcev 3012 . 2  |-  ( ( T  e.  RR+  /\  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
17423, 167, 173syl2anc 643 1  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   ifcif 3699   class class class wbr 4172   `'ccnv 4836   dom cdm 4837   "cima 4840    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   2c2 10005   RR+crp 10568   [,)cico 10874   Recre 11857   abscabs 11994   ↾t crest 13603   TopOpenctopn 13604  ℂfldccnfld 16658    ^ c ccxp 20406
This theorem is referenced by:  cxpcn3  20585
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408
  Copyright terms: Public domain W3C validator