MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3lem Structured version   Visualization version   Unicode version

Theorem cxpcn3lem 23766
Description: Lemma for cxpcn3 23767. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d  |-  D  =  ( `' Re " RR+ )
cxpcn3.j  |-  J  =  ( TopOpen ` fld )
cxpcn3.k  |-  K  =  ( Jt  ( 0 [,) +oo ) )
cxpcn3.l  |-  L  =  ( Jt  D )
cxpcn3.u  |-  U  =  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )
cxpcn3.t  |-  T  =  if ( U  <_ 
( E  ^c 
( 1  /  U
) ) ,  U ,  ( E  ^c  ( 1  /  U ) ) )
Assertion
Ref Expression
cxpcn3lem  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  E
) )
Distinct variable groups:    a, b,
d, A    E, a,
b, d    J, d    K, a, b, d    D, a, b, d    L, a, b, d    T, a, b, d
Allowed substitution hints:    U( a, b, d)    J( a, b)

Proof of Theorem cxpcn3lem
StepHypRef Expression
1 cxpcn3.t . . 3  |-  T  =  if ( U  <_ 
( E  ^c 
( 1  /  U
) ) ,  U ,  ( E  ^c  ( 1  /  U ) ) )
2 cxpcn3.u . . . . 5  |-  U  =  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )
3 cxpcn3.d . . . . . . . . . . 11  |-  D  =  ( `' Re " RR+ )
43eleq2i 2541 . . . . . . . . . 10  |-  ( A  e.  D  <->  A  e.  ( `' Re " RR+ )
)
5 ref 13252 . . . . . . . . . . 11  |-  Re : CC
--> RR
6 ffn 5739 . . . . . . . . . . 11  |-  ( Re : CC --> RR  ->  Re  Fn  CC )
7 elpreima 6017 . . . . . . . . . . 11  |-  ( Re  Fn  CC  ->  ( A  e.  ( `' Re " RR+ )  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) ) )
85, 6, 7mp2b 10 . . . . . . . . . 10  |-  ( A  e.  ( `' Re "
RR+ )  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) )
94, 8bitri 257 . . . . . . . . 9  |-  ( A  e.  D  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) )
109simprbi 471 . . . . . . . 8  |-  ( A  e.  D  ->  (
Re `  A )  e.  RR+ )
1110adantr 472 . . . . . . 7  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( Re `  A
)  e.  RR+ )
12 1rp 11329 . . . . . . 7  |-  1  e.  RR+
13 ifcl 3914 . . . . . . 7  |-  ( ( ( Re `  A
)  e.  RR+  /\  1  e.  RR+ )  ->  if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  e.  RR+ )
1411, 12, 13sylancl 675 . . . . . 6  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  e.  RR+ )
1514rphalfcld 11376 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )  e.  RR+ )
162, 15syl5eqel 2553 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  U  e.  RR+ )
17 simpr 468 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E  e.  RR+ )
1816rpreccld 11374 . . . . . 6  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( 1  /  U
)  e.  RR+ )
1918rpred 11364 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( 1  /  U
)  e.  RR )
2017, 19rpcxpcld 23754 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( E  ^c 
( 1  /  U
) )  e.  RR+ )
2116, 20ifcld 3915 . . 3  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  if ( U  <_  ( E  ^c  ( 1  /  U ) ) ,  U ,  ( E  ^c  ( 1  /  U ) ) )  e.  RR+ )
221, 21syl5eqel 2553 . 2  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  T  e.  RR+ )
23 elrege0 11764 . . . 4  |-  ( a  e.  ( 0 [,) +oo )  <->  ( a  e.  RR  /\  0  <_ 
a ) )
24 0red 9662 . . . . . . 7  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
0  e.  RR )
25 leloe 9738 . . . . . . 7  |-  ( ( 0  e.  RR  /\  a  e.  RR )  ->  ( 0  <_  a  <->  ( 0  <  a  \/  0  =  a ) ) )
2624, 25sylan 479 . . . . . 6  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  <_ 
a  <->  ( 0  < 
a  \/  0  =  a ) ) )
27 elrp 11327 . . . . . . . . 9  |-  ( a  e.  RR+  <->  ( a  e.  RR  /\  0  < 
a ) )
28 simp2l 1056 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  RR+ )
29 simp2r 1057 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  b  e.  D )
30 cnvimass 5194 . . . . . . . . . . . . . . . . . 18  |-  ( `' Re " RR+ )  C_ 
dom  Re
315fdmi 5746 . . . . . . . . . . . . . . . . . 18  |-  dom  Re  =  CC
3230, 31sseqtri 3450 . . . . . . . . . . . . . . . . 17  |-  ( `' Re " RR+ )  C_  CC
333, 32eqsstri 3448 . . . . . . . . . . . . . . . 16  |-  D  C_  CC
3433sseli 3414 . . . . . . . . . . . . . . 15  |-  ( b  e.  D  ->  b  e.  CC )
3529, 34syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  b  e.  CC )
36 abscxp 23716 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  CC )  ->  ( abs `  ( a  ^c  b ) )  =  ( a  ^c  ( Re `  b ) ) )
3728, 35, 36syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( a  ^c 
b ) )  =  ( a  ^c 
( Re `  b
) ) )
3835recld 13334 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  b )  e.  RR )
3928, 38rpcxpcld 23754 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  ( Re `  b ) )  e.  RR+ )
4039rpred 11364 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  ( Re `  b ) )  e.  RR )
41163ad2ant1 1051 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  e.  RR+ )
4241rpred 11364 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  e.  RR )
4328, 42rpcxpcld 23754 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  U )  e.  RR+ )
4443rpred 11364 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  U )  e.  RR )
45 simp1r 1055 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  E  e.  RR+ )
4645rpred 11364 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  E  e.  RR )
47 simp1l 1054 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  A  e.  D )
489simplbi 467 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  D  ->  A  e.  CC )
4947, 48syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  A  e.  CC )
5049recld 13334 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  e.  RR )
5150rehalfcld 10882 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  /  2 )  e.  RR )
52 1re 9660 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
53 min1 11506 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( Re `  A
)  e.  RR  /\  1  e.  RR )  ->  if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  <_  (
Re `  A )
)
5450, 52, 53sylancl 675 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  <_  ( Re `  A ) )
55143ad2ant1 1051 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  e.  RR+ )
5655rpred 11364 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  e.  RR )
57 2re 10701 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  RR
5857a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  2  e.  RR )
59 2pos 10723 . . . . . . . . . . . . . . . . . . . 20  |-  0  <  2
6059a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  0  <  2 )
61 lediv1 10492 . . . . . . . . . . . . . . . . . . 19  |-  ( ( if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  e.  RR  /\  ( Re `  A
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  ( Re `  A )  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) ) )
6256, 50, 58, 60, 61syl112anc 1296 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  ( Re `  A )  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) ) )
6354, 62mpbid 215 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) )
642, 63syl5eqbr 4429 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <_  ( ( Re `  A
)  /  2 ) )
6550recnd 9687 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  e.  CC )
66652halvesd 10881 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  =  ( Re `  A
) )
6749, 35resubd 13356 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  =  ( ( Re `  A
)  -  ( Re
`  b ) ) )
6849, 35subcld 10005 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( A  -  b )  e.  CC )
6968recld 13334 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  e.  RR )
7068abscld 13575 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  e.  RR )
7168releabsd 13590 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <_  ( abs `  ( A  -  b ) ) )
72 simp3r 1059 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  T
)
7372, 1syl6breq 4435 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  if ( U  <_  ( E  ^c  ( 1  /  U ) ) ,  U ,  ( E  ^c  ( 1  /  U ) ) ) )
74203ad2ant1 1051 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  ^c  ( 1  /  U ) )  e.  RR+ )
7574rpred 11364 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  ^c  ( 1  /  U ) )  e.  RR )
76 ltmin 11511 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( abs `  ( A  -  b )
)  e.  RR  /\  U  e.  RR  /\  ( E  ^c  ( 1  /  U ) )  e.  RR )  -> 
( ( abs `  ( A  -  b )
)  <  if ( U  <_  ( E  ^c  ( 1  /  U ) ) ,  U ,  ( E  ^c  ( 1  /  U ) ) )  <->  ( ( abs `  ( A  -  b
) )  <  U  /\  ( abs `  ( A  -  b )
)  <  ( E  ^c  ( 1  /  U ) ) ) ) )
7770, 42, 75, 76syl3anc 1292 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( ( abs `  ( A  -  b ) )  < 
if ( U  <_ 
( E  ^c 
( 1  /  U
) ) ,  U ,  ( E  ^c  ( 1  /  U ) ) )  <-> 
( ( abs `  ( A  -  b )
)  <  U  /\  ( abs `  ( A  -  b ) )  <  ( E  ^c  ( 1  /  U ) ) ) ) )
7873, 77mpbid 215 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( ( abs `  ( A  -  b ) )  < 
U  /\  ( abs `  ( A  -  b
) )  <  ( E  ^c  ( 1  /  U ) ) ) )
7978simpld 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  U
)
8069, 70, 42, 71, 79lelttrd 9810 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <  U
)
8169, 42, 51, 80, 64ltletrd 9812 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <  (
( Re `  A
)  /  2 ) )
8267, 81eqbrtrrd 4418 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  -  ( Re `  b ) )  < 
( ( Re `  A )  /  2
) )
8350, 38, 51ltsubadd2d 10232 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  -  ( Re
`  b ) )  <  ( ( Re
`  A )  / 
2 )  <->  ( Re `  A )  <  (
( Re `  b
)  +  ( ( Re `  A )  /  2 ) ) ) )
8482, 83mpbid 215 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  <  (
( Re `  b
)  +  ( ( Re `  A )  /  2 ) ) )
8566, 84eqbrtrd 4416 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  < 
( ( Re `  b )  +  ( ( Re `  A
)  /  2 ) ) )
8651, 38, 51ltadd1d 10227 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  <  ( Re `  b )  <->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  < 
( ( Re `  b )  +  ( ( Re `  A
)  /  2 ) ) ) )
8785, 86mpbird 240 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  /  2 )  < 
( Re `  b
) )
8842, 51, 38, 64, 87lelttrd 9810 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <  ( Re `  b ) )
8928rpred 11364 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  RR )
9052a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  1  e.  RR )
9128rprege0d 11371 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  e.  RR  /\  0  <_ 
a ) )
92 absid 13436 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  RR  /\  0  <_  a )  -> 
( abs `  a
)  =  a )
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  a )  =  a )
94 simp3l 1058 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  a )  <  T
)
9593, 94eqbrtrrd 4418 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  T )
9695, 1syl6breq 4435 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  if ( U  <_  ( E  ^c  ( 1  /  U ) ) ,  U ,  ( E  ^c  ( 1  /  U ) ) ) )
97 ltmin 11511 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  RR  /\  U  e.  RR  /\  ( E  ^c  ( 1  /  U ) )  e.  RR )  -> 
( a  <  if ( U  <_  ( E  ^c  ( 1  /  U ) ) ,  U ,  ( E  ^c  ( 1  /  U ) ) )  <->  ( a  <  U  /\  a  < 
( E  ^c 
( 1  /  U
) ) ) ) )
9889, 42, 75, 97syl3anc 1292 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  <  if ( U  <_ 
( E  ^c 
( 1  /  U
) ) ,  U ,  ( E  ^c  ( 1  /  U ) ) )  <-> 
( a  <  U  /\  a  <  ( E  ^c  ( 1  /  U ) ) ) ) )
9996, 98mpbid 215 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  <  U  /\  a  < 
( E  ^c 
( 1  /  U
) ) ) )
10099simpld 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  U )
101 rehalfcl 10862 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
10252, 101mp1i 13 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  2 )  e.  RR )
103 min2 11507 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Re `  A
)  e.  RR  /\  1  e.  RR )  ->  if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  <_  1
)
10450, 52, 103sylancl 675 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  <_  1 )
105 lediv1 10492 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  e.  RR  /\  1  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  1  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) ) )
10656, 90, 58, 60, 105syl112anc 1296 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  1  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) ) )
107104, 106mpbid 215 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) )
1082, 107syl5eqbr 4429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <_  ( 1  /  2 ) )
109 halflt1 10854 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  /  2 )  <  1
110109a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  2 )  <  1 )
11142, 102, 90, 108, 110lelttrd 9810 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <  1 )
11289, 42, 90, 100, 111lttrd 9813 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  1 )
11328, 42, 112, 38cxplt3d 23756 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  <  ( Re `  b
)  <->  ( a  ^c  ( Re `  b ) )  < 
( a  ^c  U ) ) )
11488, 113mpbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  ( Re `  b ) )  < 
( a  ^c  U ) )
11541rpcnne0d 11373 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  e.  CC  /\  U  =/=  0 ) )
116 recid 10306 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  CC  /\  U  =/=  0 )  -> 
( U  x.  (
1  /  U ) )  =  1 )
117115, 116syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  x.  ( 1  /  U
) )  =  1 )
118117oveq2d 6324 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  ( U  x.  ( 1  /  U
) ) )  =  ( a  ^c 
1 ) )
11941rpreccld 11374 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  U )  e.  RR+ )
120119rpcnd 11366 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  U )  e.  CC )
12128, 42, 120cxpmuld 23758 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  ( U  x.  ( 1  /  U
) ) )  =  ( ( a  ^c  U )  ^c 
( 1  /  U
) ) )
12228rpcnd 11366 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  CC )
123122cxp1d 23730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  1 )  =  a )
124118, 121, 1233eqtr3d 2513 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^c  U )  ^c  ( 1  /  U ) )  =  a )
12599simprd 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  ( E  ^c  ( 1  /  U ) ) )
126124, 125eqbrtrd 4416 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^c  U )  ^c  ( 1  /  U ) )  <  ( E  ^c  ( 1  /  U ) ) )
12743rprege0d 11371 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^c  U )  e.  RR  /\  0  <_  ( a  ^c  U ) ) )
12845rprege0d 11371 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  e.  RR  /\  0  <_  E ) )
129 cxplt2 23722 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  ^c  U )  e.  RR  /\  0  <_  ( a  ^c  U )
)  /\  ( E  e.  RR  /\  0  <_  E )  /\  (
1  /  U )  e.  RR+ )  ->  (
( a  ^c  U )  <  E  <->  ( ( a  ^c  U )  ^c 
( 1  /  U
) )  <  ( E  ^c  ( 1  /  U ) ) ) )
130127, 128, 119, 129syl3anc 1292 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^c  U )  <  E  <->  ( (
a  ^c  U )  ^c  ( 1  /  U ) )  <  ( E  ^c  ( 1  /  U ) ) ) )
131126, 130mpbird 240 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  U )  <  E )
13240, 44, 46, 114, 131lttrd 9813 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^c  ( Re `  b ) )  < 
E )
13337, 132eqbrtrd 4416 . . . . . . . . . . . 12  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( a  ^c 
b ) )  < 
E )
1341333expia 1233 . . . . . . . . . . 11  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D ) )  ->  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^c  b ) )  <  E
) )
135134anassrs 660 . . . . . . . . . 10  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR+ )  /\  b  e.  D )  ->  (
( ( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^c  b ) )  <  E
) )
136135ralrimiva 2809 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR+ )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^c  b ) )  <  E
) )
13727, 136sylan2br 484 . . . . . . . 8  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR  /\  0  <  a ) )  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^c  b ) )  <  E
) )
138137expr 626 . . . . . . 7  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  < 
a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^c  b ) )  <  E
) ) )
139 elpreima 6017 . . . . . . . . . . . . . . . . . . 19  |-  ( Re  Fn  CC  ->  (
b  e.  ( `' Re " RR+ )  <->  ( b  e.  CC  /\  ( Re `  b )  e.  RR+ ) ) )
1405, 6, 139mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  ( `' Re "
RR+ )  <->  ( b  e.  CC  /\  ( Re
`  b )  e.  RR+ ) )
141140simprbi 471 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( `' Re "
RR+ )  ->  (
Re `  b )  e.  RR+ )
142141, 3eleq2s 2567 . . . . . . . . . . . . . . . 16  |-  ( b  e.  D  ->  (
Re `  b )  e.  RR+ )
143142rpne0d 11369 . . . . . . . . . . . . . . 15  |-  ( b  e.  D  ->  (
Re `  b )  =/=  0 )
144 fveq2 5879 . . . . . . . . . . . . . . . . 17  |-  ( b  =  0  ->  (
Re `  b )  =  ( Re ` 
0 ) )
145 re0 13292 . . . . . . . . . . . . . . . . 17  |-  ( Re
`  0 )  =  0
146144, 145syl6eq 2521 . . . . . . . . . . . . . . . 16  |-  ( b  =  0  ->  (
Re `  b )  =  0 )
147146necon3i 2675 . . . . . . . . . . . . . . 15  |-  ( ( Re `  b )  =/=  0  ->  b  =/=  0 )
148143, 147syl 17 . . . . . . . . . . . . . 14  |-  ( b  e.  D  ->  b  =/=  0 )
14934, 1480cxpd 23734 . . . . . . . . . . . . 13  |-  ( b  e.  D  ->  (
0  ^c  b )  =  0 )
150149adantl 473 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  ^c  b )  =  0 )
151150abs00bd 13431 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  ( abs `  ( 0  ^c  b ) )  =  0 )
152 simpllr 777 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  E  e.  RR+ )
153152rpgt0d 11367 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  0  <  E )
154151, 153eqbrtrd 4416 . . . . . . . . . 10  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  ( abs `  ( 0  ^c  b ) )  <  E )
155 oveq1 6315 . . . . . . . . . . . 12  |-  ( 0  =  a  ->  (
0  ^c  b )  =  ( a  ^c  b ) )
156155fveq2d 5883 . . . . . . . . . . 11  |-  ( 0  =  a  ->  ( abs `  ( 0  ^c  b ) )  =  ( abs `  (
a  ^c  b ) ) )
157156breq1d 4405 . . . . . . . . . 10  |-  ( 0  =  a  ->  (
( abs `  (
0  ^c  b ) )  <  E  <->  ( abs `  ( a  ^c  b ) )  <  E ) )
158154, 157syl5ibcom 228 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  =  a  -> 
( abs `  (
a  ^c  b ) )  <  E
) )
159158a1dd 46 . . . . . . . 8  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  =  a  -> 
( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^c  b ) )  <  E
) ) )
160159ralrimdva 2812 . . . . . . 7  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  =  a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^c  b ) )  <  E
) ) )
161138, 160jaod 387 . . . . . 6  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( ( 0  <  a  \/  0  =  a )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^c  b ) )  <  E
) ) )
16226, 161sylbid 223 . . . . 5  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  <_ 
a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^c  b ) )  <  E
) ) )
163162expimpd 614 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( ( a  e.  RR  /\  0  <_ 
a )  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^c  b ) )  <  E
) ) )
16423, 163syl5bi 225 . . 3  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( a  e.  ( 0 [,) +oo )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^c  b ) )  <  E
) ) )
165164ralrimiv 2808 . 2  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  A. a  e.  (
0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^c  b ) )  <  E
) )
166 breq2 4399 . . . . . 6  |-  ( d  =  T  ->  (
( abs `  a
)  <  d  <->  ( abs `  a )  <  T
) )
167 breq2 4399 . . . . . 6  |-  ( d  =  T  ->  (
( abs `  ( A  -  b )
)  <  d  <->  ( abs `  ( A  -  b
) )  <  T
) )
168166, 167anbi12d 725 . . . . 5  |-  ( d  =  T  ->  (
( ( abs `  a
)  <  d  /\  ( abs `  ( A  -  b ) )  <  d )  <->  ( ( abs `  a )  < 
T  /\  ( abs `  ( A  -  b
) )  <  T
) ) )
169168imbi1d 324 . . . 4  |-  ( d  =  T  ->  (
( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  E
)  <->  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b ) )  < 
T )  ->  ( abs `  ( a  ^c  b ) )  <  E ) ) )
1701692ralbidv 2832 . . 3  |-  ( d  =  T  ->  ( A. a  e.  (
0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  E
)  <->  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^c  b ) )  <  E
) ) )
171170rspcev 3136 . 2  |-  ( ( T  e.  RR+  /\  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  (
( ( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^c  b ) )  <  E
) )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  E
) )
17222, 165, 171syl2anc 673 1  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  E
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   ifcif 3872   class class class wbr 4395   `'ccnv 4838   dom cdm 4839   "cima 4842    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562   +oocpnf 9690    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   2c2 10681   RR+crp 11325   [,)cico 11662   Recre 13237   abscabs 13374   ↾t crest 15397   TopOpenctopn 15398  ℂfldccnfld 19047    ^c ccxp 23584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-pi 14203  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-cxp 23586
This theorem is referenced by:  cxpcn3  23767
  Copyright terms: Public domain W3C validator