MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2limlem Structured version   Unicode version

Theorem cxp2limlem 23170
Description: A linear factor grows slower than any exponential with base greater than  1. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
cxp2limlem  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( n  e.  RR+  |->  ( n  /  ( A  ^c  n ) ) )  ~~> r  0 )
Distinct variable group:    A, n

Proof of Theorem cxp2limlem
StepHypRef Expression
1 0red 9595 . 2  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
0  e.  RR )
2 2rp 11229 . . . . 5  |-  2  e.  RR+
3 rplogcl 22854 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( log `  A
)  e.  RR+ )
4 2z 10897 . . . . . 6  |-  2  e.  ZZ
5 rpexpcl 12159 . . . . . 6  |-  ( ( ( log `  A
)  e.  RR+  /\  2  e.  ZZ )  ->  (
( log `  A
) ^ 2 )  e.  RR+ )
63, 4, 5sylancl 662 . . . . 5  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( ( log `  A
) ^ 2 )  e.  RR+ )
7 rpdivcl 11246 . . . . 5  |-  ( ( 2  e.  RR+  /\  (
( log `  A
) ^ 2 )  e.  RR+ )  ->  (
2  /  ( ( log `  A ) ^ 2 ) )  e.  RR+ )
82, 6, 7sylancr 663 . . . 4  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 2  /  (
( log `  A
) ^ 2 ) )  e.  RR+ )
98rpcnd 11262 . . 3  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 2  /  (
( log `  A
) ^ 2 ) )  e.  CC )
10 divrcnv 13638 . . 3  |-  ( ( 2  /  ( ( log `  A ) ^ 2 ) )  e.  CC  ->  (
n  e.  RR+  |->  ( ( 2  /  ( ( log `  A ) ^ 2 ) )  /  n ) )  ~~> r  0 )
119, 10syl 16 . 2  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( n  e.  RR+  |->  ( ( 2  / 
( ( log `  A
) ^ 2 ) )  /  n ) )  ~~> r  0 )
128rpred 11260 . . 3  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 2  /  (
( log `  A
) ^ 2 ) )  e.  RR )
13 rerpdivcl 11251 . . 3  |-  ( ( ( 2  /  (
( log `  A
) ^ 2 ) )  e.  RR  /\  n  e.  RR+ )  -> 
( ( 2  / 
( ( log `  A
) ^ 2 ) )  /  n )  e.  RR )
1412, 13sylan 471 . 2  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( 2  /  ( ( log `  A ) ^ 2 ) )  /  n
)  e.  RR )
15 simpr 461 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  n  e.  RR+ )
16 simpl 457 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <  A )  ->  A  e.  RR )
17 1red 9609 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
1  e.  RR )
18 0lt1 10076 . . . . . . . 8  |-  0  <  1
1918a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
0  <  1 )
20 simpr 461 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
1  <  A )
211, 17, 16, 19, 20lttrd 9741 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
0  <  A )
2216, 21elrpd 11258 . . . . 5  |-  ( ( A  e.  RR  /\  1  <  A )  ->  A  e.  RR+ )
23 rpre 11230 . . . . 5  |-  ( n  e.  RR+  ->  n  e.  RR )
24 rpcxpcl 22922 . . . . 5  |-  ( ( A  e.  RR+  /\  n  e.  RR )  ->  ( A  ^c  n )  e.  RR+ )
2522, 23, 24syl2an 477 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( A  ^c  n )  e.  RR+ )
2615, 25rpdivcld 11277 . . 3  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n  / 
( A  ^c 
n ) )  e.  RR+ )
2726rpred 11260 . 2  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n  / 
( A  ^c 
n ) )  e.  RR )
283adantr 465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( log `  A
)  e.  RR+ )
2915, 28rpmulcld 11276 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n  x.  ( log `  A
) )  e.  RR+ )
3029rpred 11260 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n  x.  ( log `  A
) )  e.  RR )
3130resqcld 12310 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( n  x.  ( log `  A
) ) ^ 2 )  e.  RR )
3231rehalfcld 10786 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( ( n  x.  ( log `  A ) ) ^
2 )  /  2
)  e.  RR )
33 1rp 11228 . . . . . . . . . . 11  |-  1  e.  RR+
34 rpaddcl 11244 . . . . . . . . . . 11  |-  ( ( 1  e.  RR+  /\  (
n  x.  ( log `  A ) )  e.  RR+ )  ->  ( 1  +  ( n  x.  ( log `  A
) ) )  e.  RR+ )
3533, 29, 34sylancr 663 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( 1  +  ( n  x.  ( log `  A ) ) )  e.  RR+ )
3635rpred 11260 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( 1  +  ( n  x.  ( log `  A ) ) )  e.  RR )
3736, 32readdcld 9621 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( 1  +  ( n  x.  ( log `  A
) ) )  +  ( ( ( n  x.  ( log `  A
) ) ^ 2 )  /  2 ) )  e.  RR )
3830reefcld 13696 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( exp `  (
n  x.  ( log `  A ) ) )  e.  RR )
3932, 35ltaddrp2d 11290 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( ( n  x.  ( log `  A ) ) ^
2 )  /  2
)  <  ( (
1  +  ( n  x.  ( log `  A
) ) )  +  ( ( ( n  x.  ( log `  A
) ) ^ 2 )  /  2 ) ) )
40 efgt1p2 13721 . . . . . . . . 9  |-  ( ( n  x.  ( log `  A ) )  e.  RR+  ->  ( ( 1  +  ( n  x.  ( log `  A
) ) )  +  ( ( ( n  x.  ( log `  A
) ) ^ 2 )  /  2 ) )  <  ( exp `  ( n  x.  ( log `  A ) ) ) )
4129, 40syl 16 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( 1  +  ( n  x.  ( log `  A
) ) )  +  ( ( ( n  x.  ( log `  A
) ) ^ 2 )  /  2 ) )  <  ( exp `  ( n  x.  ( log `  A ) ) ) )
4232, 37, 38, 39, 41lttrd 9741 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( ( n  x.  ( log `  A ) ) ^
2 )  /  2
)  <  ( exp `  ( n  x.  ( log `  A ) ) ) )
4323adantl 466 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  n  e.  RR )
4443recnd 9620 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  n  e.  CC )
4544sqcld 12282 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n ^
2 )  e.  CC )
46 2cnd 10609 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  2  e.  CC )
476adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( log `  A ) ^ 2 )  e.  RR+ )
4847rpcnd 11262 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( log `  A ) ^ 2 )  e.  CC )
49 2ne0 10629 . . . . . . . . . 10  |-  2  =/=  0
5049a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  2  =/=  0
)
5147rpne0d 11265 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( log `  A ) ^ 2 )  =/=  0 )
5245, 46, 48, 50, 51divdiv2d 10353 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( n ^ 2 )  / 
( 2  /  (
( log `  A
) ^ 2 ) ) )  =  ( ( ( n ^
2 )  x.  (
( log `  A
) ^ 2 ) )  /  2 ) )
533rpcnd 11262 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( log `  A
)  e.  CC )
5453adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( log `  A
)  e.  CC )
5544, 54sqmuld 12296 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( n  x.  ( log `  A
) ) ^ 2 )  =  ( ( n ^ 2 )  x.  ( ( log `  A ) ^ 2 ) ) )
5655oveq1d 6292 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( ( n  x.  ( log `  A ) ) ^
2 )  /  2
)  =  ( ( ( n ^ 2 )  x.  ( ( log `  A ) ^ 2 ) )  /  2 ) )
5752, 56eqtr4d 2485 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( n ^ 2 )  / 
( 2  /  (
( log `  A
) ^ 2 ) ) )  =  ( ( ( n  x.  ( log `  A
) ) ^ 2 )  /  2 ) )
5816recnd 9620 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <  A )  ->  A  e.  CC )
5958adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  A  e.  CC )
6022adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  A  e.  RR+ )
6160rpne0d 11265 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  A  =/=  0
)
6259, 61, 44cxpefd 22958 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( A  ^c  n )  =  ( exp `  (
n  x.  ( log `  A ) ) ) )
6342, 57, 623brtr4d 4463 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( n ^ 2 )  / 
( 2  /  (
( log `  A
) ^ 2 ) ) )  <  ( A  ^c  n ) )
64 rpexpcl 12159 . . . . . . . . 9  |-  ( ( n  e.  RR+  /\  2  e.  ZZ )  ->  (
n ^ 2 )  e.  RR+ )
6515, 4, 64sylancl 662 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n ^
2 )  e.  RR+ )
668adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( 2  / 
( ( log `  A
) ^ 2 ) )  e.  RR+ )
6765, 66rpdivcld 11277 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( n ^ 2 )  / 
( 2  /  (
( log `  A
) ^ 2 ) ) )  e.  RR+ )
6867, 25, 15ltdiv2d 11283 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( ( n ^ 2 )  /  ( 2  / 
( ( log `  A
) ^ 2 ) ) )  <  ( A  ^c  n )  <-> 
( n  /  ( A  ^c  n ) )  <  ( n  /  ( ( n ^ 2 )  / 
( 2  /  (
( log `  A
) ^ 2 ) ) ) ) ) )
6963, 68mpbid 210 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n  / 
( A  ^c 
n ) )  < 
( n  /  (
( n ^ 2 )  /  ( 2  /  ( ( log `  A ) ^ 2 ) ) ) ) )
709adantr 465 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( 2  / 
( ( log `  A
) ^ 2 ) )  e.  CC )
7165rpne0d 11265 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n ^
2 )  =/=  0
)
7266rpne0d 11265 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( 2  / 
( ( log `  A
) ^ 2 ) )  =/=  0 )
7344, 45, 70, 71, 72divdiv2d 10353 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n  / 
( ( n ^
2 )  /  (
2  /  ( ( log `  A ) ^ 2 ) ) ) )  =  ( ( n  x.  (
2  /  ( ( log `  A ) ^ 2 ) ) )  /  ( n ^ 2 ) ) )
7444sqvald 12281 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n ^
2 )  =  ( n  x.  n ) )
7574oveq2d 6293 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( n  x.  ( 2  / 
( ( log `  A
) ^ 2 ) ) )  /  (
n ^ 2 ) )  =  ( ( n  x.  ( 2  /  ( ( log `  A ) ^ 2 ) ) )  / 
( n  x.  n
) ) )
76 rpne0 11239 . . . . . . . 8  |-  ( n  e.  RR+  ->  n  =/=  0 )
7776adantl 466 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  n  =/=  0
)
7870, 44, 44, 77, 77divcan5d 10347 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( ( n  x.  ( 2  / 
( ( log `  A
) ^ 2 ) ) )  /  (
n  x.  n ) )  =  ( ( 2  /  ( ( log `  A ) ^ 2 ) )  /  n ) )
7973, 75, 783eqtrd 2486 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n  / 
( ( n ^
2 )  /  (
2  /  ( ( log `  A ) ^ 2 ) ) ) )  =  ( ( 2  /  (
( log `  A
) ^ 2 ) )  /  n ) )
8069, 79breqtrd 4457 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n  / 
( A  ^c 
n ) )  < 
( ( 2  / 
( ( log `  A
) ^ 2 ) )  /  n ) )
8127, 14, 80ltled 9731 . . 3  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  ( n  / 
( A  ^c 
n ) )  <_ 
( ( 2  / 
( ( log `  A
) ^ 2 ) )  /  n ) )
8281adantrr 716 . 2  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  ( n  e.  RR+  /\  0  <_  n
) )  ->  (
n  /  ( A  ^c  n ) )  <_  ( (
2  /  ( ( log `  A ) ^ 2 ) )  /  n ) )
8326rpge0d 11264 . . 3  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  n  e.  RR+ )  ->  0  <_  (
n  /  ( A  ^c  n ) ) )
8483adantrr 716 . 2  |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  ( n  e.  RR+  /\  0  <_  n
) )  ->  0  <_  ( n  /  ( A  ^c  n ) ) )
851, 1, 11, 14, 27, 82, 84rlimsqz2 13447 1  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( n  e.  RR+  |->  ( n  /  ( A  ^c  n ) ) )  ~~> r  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1802    =/= wne 2636   class class class wbr 4433    |-> cmpt 4491   ` cfv 5574  (class class class)co 6277   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    < clt 9626    <_ cle 9627    / cdiv 10207   2c2 10586   ZZcz 10865   RR+crp 11224   ^cexp 12140    ~~> r crli 13282   expce 13670   logclog 22807    ^c ccxp 22808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-supp 6900  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-map 7420  df-pm 7421  df-ixp 7468  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fsupp 7828  df-fi 7869  df-sup 7899  df-oi 7933  df-card 8318  df-cda 8546  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10980  df-uz 11086  df-q 11187  df-rp 11225  df-xneg 11322  df-xadd 11323  df-xmul 11324  df-ioo 11537  df-ioc 11538  df-ico 11539  df-icc 11540  df-fz 11677  df-fzo 11799  df-fl 11903  df-mod 11971  df-seq 12082  df-exp 12141  df-fac 12328  df-bc 12355  df-hash 12380  df-shft 12874  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-limsup 13268  df-clim 13285  df-rlim 13286  df-sum 13483  df-ef 13676  df-sin 13678  df-cos 13679  df-pi 13681  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-starv 14584  df-sca 14585  df-vsca 14586  df-ip 14587  df-tset 14588  df-ple 14589  df-ds 14591  df-unif 14592  df-hom 14593  df-cco 14594  df-rest 14692  df-topn 14693  df-0g 14711  df-gsum 14712  df-topgen 14713  df-pt 14714  df-prds 14717  df-xrs 14771  df-qtop 14776  df-imas 14777  df-xps 14779  df-mre 14855  df-mrc 14856  df-acs 14858  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-submnd 15836  df-mulg 15929  df-cntz 16224  df-cmn 16669  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-fbas 18284  df-fg 18285  df-cnfld 18289  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-cld 19386  df-ntr 19387  df-cls 19388  df-nei 19465  df-lp 19503  df-perf 19504  df-cn 19594  df-cnp 19595  df-haus 19682  df-tx 19929  df-hmeo 20122  df-fil 20213  df-fm 20305  df-flim 20306  df-flf 20307  df-xms 20689  df-ms 20690  df-tms 20691  df-cncf 21248  df-limc 22136  df-dv 22137  df-log 22809  df-cxp 22810
This theorem is referenced by:  cxp2lim  23171  cxploglim  23172
  Copyright terms: Public domain W3C validator