MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvxcl Structured version   Unicode version

Theorem cvxcl 23512
Description: Closure of a 0-1 linear combination in a convex set. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cvxcl.1  |-  ( ph  ->  D  C_  RR )
cvxcl.2  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( x [,] y
)  C_  D )
Assertion
Ref Expression
cvxcl  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  x.  X )  +  ( ( 1  -  T
)  x.  Y ) )  e.  D )
Distinct variable groups:    x, y, D    ph, x, y    x, X, y    x, Y, y
Allowed substitution hints:    T( x, y)

Proof of Theorem cvxcl
StepHypRef Expression
1 cvxcl.2 . . . . . 6  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( x [,] y
)  C_  D )
21ralrimivva 2875 . . . . 5  |-  ( ph  ->  A. x  e.  D  A. y  e.  D  ( x [,] y
)  C_  D )
32ad2antrr 723 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D
)
4 simpr1 1000 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  X  e.  D )
5 simpr2 1001 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  Y  e.  D )
6 oveq1 6277 . . . . . . . 8  |-  ( x  =  X  ->  (
x [,] y )  =  ( X [,] y ) )
76sseq1d 3516 . . . . . . 7  |-  ( x  =  X  ->  (
( x [,] y
)  C_  D  <->  ( X [,] y )  C_  D
) )
8 oveq2 6278 . . . . . . . 8  |-  ( y  =  Y  ->  ( X [,] y )  =  ( X [,] Y
) )
98sseq1d 3516 . . . . . . 7  |-  ( y  =  Y  ->  (
( X [,] y
)  C_  D  <->  ( X [,] Y )  C_  D
) )
107, 9rspc2v 3216 . . . . . 6  |-  ( ( X  e.  D  /\  Y  e.  D )  ->  ( A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D  ->  ( X [,] Y
)  C_  D )
)
114, 5, 10syl2anc 659 . . . . 5  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D  ->  ( X [,] Y
)  C_  D )
)
1211adantr 463 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  ( A. x  e.  D  A. y  e.  D  ( x [,] y
)  C_  D  ->  ( X [,] Y ) 
C_  D ) )
133, 12mpd 15 . . 3  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  ( X [,] Y )  C_  D )
14 ax-1cn 9539 . . . . . . . 8  |-  1  e.  CC
15 unitssre 11670 . . . . . . . . . 10  |-  ( 0 [,] 1 )  C_  RR
16 simpr3 1002 . . . . . . . . . 10  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  T  e.  ( 0 [,] 1 ) )
1715, 16sseldi 3487 . . . . . . . . 9  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  T  e.  RR )
1817recnd 9611 . . . . . . . 8  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  T  e.  CC )
19 nncan 9839 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
2014, 18, 19sylancr 661 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( 1  -  (
1  -  T ) )  =  T )
2120oveq1d 6285 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( 1  -  ( 1  -  T
) )  x.  X
)  =  ( T  x.  X ) )
2221oveq1d 6285 . . . . 5  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( ( 1  -  ( 1  -  T ) )  x.  X )  +  ( ( 1  -  T
)  x.  Y ) )  =  ( ( T  x.  X )  +  ( ( 1  -  T )  x.  Y ) ) )
2322adantr 463 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
( ( 1  -  ( 1  -  T
) )  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  =  ( ( T  x.  X )  +  ( ( 1  -  T )  x.  Y
) ) )
24 cvxcl.1 . . . . . . . 8  |-  ( ph  ->  D  C_  RR )
2524adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  D  C_  RR )
2625, 4sseldd 3490 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  X  e.  RR )
2726adantr 463 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  X  e.  RR )
2825, 5sseldd 3490 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  Y  e.  RR )
2928adantr 463 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  Y  e.  RR )
30 simpr 459 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  X  <  Y )
31 simplr3 1038 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  T  e.  ( 0 [,] 1
) )
32 iirev 21595 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
3331, 32syl 16 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
34 lincmb01cmp 11666 . . . . 5  |-  ( ( ( X  e.  RR  /\  Y  e.  RR  /\  X  <  Y )  /\  ( 1  -  T
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  X )  +  ( ( 1  -  T )  x.  Y
) )  e.  ( X [,] Y ) )
3527, 29, 30, 33, 34syl31anc 1229 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
( ( 1  -  ( 1  -  T
) )  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  ( X [,] Y ) )
3623, 35eqeltrrd 2543 . . 3  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  ( X [,] Y ) )
3713, 36sseldd 3490 . 2  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  D )
38 oveq2 6278 . . . . 5  |-  ( X  =  Y  ->  ( T  x.  X )  =  ( T  x.  Y ) )
3938oveq1d 6285 . . . 4  |-  ( X  =  Y  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  =  ( ( T  x.  Y )  +  ( ( 1  -  T )  x.  Y
) ) )
40 pncan3 9819 . . . . . . 7  |-  ( ( T  e.  CC  /\  1  e.  CC )  ->  ( T  +  ( 1  -  T ) )  =  1 )
4118, 14, 40sylancl 660 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( T  +  ( 1  -  T ) )  =  1 )
4241oveq1d 6285 . . . . 5  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  +  ( 1  -  T
) )  x.  Y
)  =  ( 1  x.  Y ) )
43 1re 9584 . . . . . . . 8  |-  1  e.  RR
44 resubcl 9874 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
4543, 17, 44sylancr 661 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( 1  -  T
)  e.  RR )
4645recnd 9611 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( 1  -  T
)  e.  CC )
4728recnd 9611 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  Y  e.  CC )
4818, 46, 47adddird 9610 . . . . 5  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  +  ( 1  -  T
) )  x.  Y
)  =  ( ( T  x.  Y )  +  ( ( 1  -  T )  x.  Y ) ) )
4947mulid2d 9603 . . . . 5  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( 1  x.  Y
)  =  Y )
5042, 48, 493eqtr3d 2503 . . . 4  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  x.  Y )  +  ( ( 1  -  T
)  x.  Y ) )  =  Y )
5139, 50sylan9eqr 2517 . . 3  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  =  Y )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  =  Y )
525adantr 463 . . 3  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  =  Y )  ->  Y  e.  D )
5351, 52eqeltrd 2542 . 2  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  =  Y )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  D )
542ad2antrr 723 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D
)
55 oveq1 6277 . . . . . . . 8  |-  ( x  =  Y  ->  (
x [,] y )  =  ( Y [,] y ) )
5655sseq1d 3516 . . . . . . 7  |-  ( x  =  Y  ->  (
( x [,] y
)  C_  D  <->  ( Y [,] y )  C_  D
) )
57 oveq2 6278 . . . . . . . 8  |-  ( y  =  X  ->  ( Y [,] y )  =  ( Y [,] X
) )
5857sseq1d 3516 . . . . . . 7  |-  ( y  =  X  ->  (
( Y [,] y
)  C_  D  <->  ( Y [,] X )  C_  D
) )
5956, 58rspc2v 3216 . . . . . 6  |-  ( ( Y  e.  D  /\  X  e.  D )  ->  ( A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D  ->  ( Y [,] X
)  C_  D )
)
605, 4, 59syl2anc 659 . . . . 5  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D  ->  ( Y [,] X
)  C_  D )
)
6160adantr 463 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  ( A. x  e.  D  A. y  e.  D  ( x [,] y
)  C_  D  ->  ( Y [,] X ) 
C_  D ) )
6254, 61mpd 15 . . 3  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  ( Y [,] X )  C_  D )
6326recnd 9611 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  X  e.  CC )
6418, 63mulcld 9605 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( T  x.  X
)  e.  CC )
6546, 47mulcld 9605 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( 1  -  T )  x.  Y
)  e.  CC )
6664, 65addcomd 9771 . . . . 5  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  x.  X )  +  ( ( 1  -  T
)  x.  Y ) )  =  ( ( ( 1  -  T
)  x.  Y )  +  ( T  x.  X ) ) )
6766adantr 463 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  =  ( ( ( 1  -  T )  x.  Y )  +  ( T  x.  X
) ) )
6828adantr 463 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  Y  e.  RR )
6926adantr 463 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  X  e.  RR )
70 simpr 459 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  Y  <  X )
71 simplr3 1038 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  T  e.  ( 0 [,] 1
) )
72 lincmb01cmp 11666 . . . . 5  |-  ( ( ( Y  e.  RR  /\  X  e.  RR  /\  Y  <  X )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  Y )  +  ( T  x.  X
) )  e.  ( Y [,] X ) )
7368, 69, 70, 71, 72syl31anc 1229 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  (
( ( 1  -  T )  x.  Y
)  +  ( T  x.  X ) )  e.  ( Y [,] X ) )
7467, 73eqeltrd 2542 . . 3  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  ( Y [,] X ) )
7562, 74sseldd 3490 . 2  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  D )
7626, 28lttri4d 9715 . 2  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( X  <  Y  \/  X  =  Y  \/  Y  <  X ) )
7737, 53, 75, 76mpjao3dan 1293 1  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  x.  X )  +  ( ( 1  -  T
)  x.  Y ) )  e.  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804    C_ wss 3461   class class class wbr 4439  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    - cmin 9796   [,]cicc 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-rp 11222  df-icc 11539
This theorem is referenced by:  scvxcvx  23513  jensenlem2  23515  amgmlem  23517
  Copyright terms: Public domain W3C validator