MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvxcl Structured version   Unicode version

Theorem cvxcl 22378
Description: Closure of a 0-1 linear combination in a convex set. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cvxcl.1  |-  ( ph  ->  D  C_  RR )
cvxcl.2  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( x [,] y
)  C_  D )
Assertion
Ref Expression
cvxcl  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  x.  X )  +  ( ( 1  -  T
)  x.  Y ) )  e.  D )
Distinct variable groups:    x, y, D    ph, x, y    x, X, y    x, Y, y
Allowed substitution hints:    T( x, y)

Proof of Theorem cvxcl
StepHypRef Expression
1 cvxcl.1 . . . . 5  |-  ( ph  ->  D  C_  RR )
21adantr 465 . . . 4  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  D  C_  RR )
3 simpr1 994 . . . 4  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  X  e.  D )
42, 3sseldd 3357 . . 3  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  X  e.  RR )
5 simpr2 995 . . . 4  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  Y  e.  D )
62, 5sseldd 3357 . . 3  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  Y  e.  RR )
74, 6lttri4d 9515 . 2  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( X  <  Y  \/  X  =  Y  \/  Y  <  X ) )
8 cvxcl.2 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( x [,] y
)  C_  D )
98ralrimivva 2808 . . . . . 6  |-  ( ph  ->  A. x  e.  D  A. y  e.  D  ( x [,] y
)  C_  D )
109ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D
)
11 oveq1 6098 . . . . . . . . 9  |-  ( x  =  X  ->  (
x [,] y )  =  ( X [,] y ) )
1211sseq1d 3383 . . . . . . . 8  |-  ( x  =  X  ->  (
( x [,] y
)  C_  D  <->  ( X [,] y )  C_  D
) )
13 oveq2 6099 . . . . . . . . 9  |-  ( y  =  Y  ->  ( X [,] y )  =  ( X [,] Y
) )
1413sseq1d 3383 . . . . . . . 8  |-  ( y  =  Y  ->  (
( X [,] y
)  C_  D  <->  ( X [,] Y )  C_  D
) )
1512, 14rspc2v 3079 . . . . . . 7  |-  ( ( X  e.  D  /\  Y  e.  D )  ->  ( A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D  ->  ( X [,] Y
)  C_  D )
)
163, 5, 15syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D  ->  ( X [,] Y
)  C_  D )
)
1716adantr 465 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  ( A. x  e.  D  A. y  e.  D  ( x [,] y
)  C_  D  ->  ( X [,] Y ) 
C_  D ) )
1810, 17mpd 15 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  ( X [,] Y )  C_  D )
19 ax-1cn 9340 . . . . . . . . 9  |-  1  e.  CC
20 unitssre 11432 . . . . . . . . . . 11  |-  ( 0 [,] 1 )  C_  RR
21 simpr3 996 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  T  e.  ( 0 [,] 1 ) )
2220, 21sseldi 3354 . . . . . . . . . 10  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  T  e.  RR )
2322recnd 9412 . . . . . . . . 9  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  T  e.  CC )
24 nncan 9638 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
2519, 23, 24sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( 1  -  (
1  -  T ) )  =  T )
2625oveq1d 6106 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( 1  -  ( 1  -  T
) )  x.  X
)  =  ( T  x.  X ) )
2726oveq1d 6106 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( ( 1  -  ( 1  -  T ) )  x.  X )  +  ( ( 1  -  T
)  x.  Y ) )  =  ( ( T  x.  X )  +  ( ( 1  -  T )  x.  Y ) ) )
2827adantr 465 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
( ( 1  -  ( 1  -  T
) )  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  =  ( ( T  x.  X )  +  ( ( 1  -  T )  x.  Y
) ) )
294adantr 465 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  X  e.  RR )
306adantr 465 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  Y  e.  RR )
31 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  X  <  Y )
32 simplr3 1032 . . . . . . 7  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  T  e.  ( 0 [,] 1
) )
33 iirev 20501 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
3432, 33syl 16 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
35 lincmb01cmp 11428 . . . . . 6  |-  ( ( ( X  e.  RR  /\  Y  e.  RR  /\  X  <  Y )  /\  ( 1  -  T
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  X )  +  ( ( 1  -  T )  x.  Y
) )  e.  ( X [,] Y ) )
3629, 30, 31, 34, 35syl31anc 1221 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
( ( 1  -  ( 1  -  T
) )  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  ( X [,] Y ) )
3728, 36eqeltrrd 2518 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  ( X [,] Y ) )
3818, 37sseldd 3357 . . 3  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  < 
Y )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  D )
39 oveq2 6099 . . . . . 6  |-  ( X  =  Y  ->  ( T  x.  X )  =  ( T  x.  Y ) )
4039oveq1d 6106 . . . . 5  |-  ( X  =  Y  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  =  ( ( T  x.  Y )  +  ( ( 1  -  T )  x.  Y
) ) )
41 pncan3 9618 . . . . . . . 8  |-  ( ( T  e.  CC  /\  1  e.  CC )  ->  ( T  +  ( 1  -  T ) )  =  1 )
4223, 19, 41sylancl 662 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( T  +  ( 1  -  T ) )  =  1 )
4342oveq1d 6106 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  +  ( 1  -  T
) )  x.  Y
)  =  ( 1  x.  Y ) )
44 1re 9385 . . . . . . . . 9  |-  1  e.  RR
45 resubcl 9673 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
4644, 22, 45sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( 1  -  T
)  e.  RR )
4746recnd 9412 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( 1  -  T
)  e.  CC )
486recnd 9412 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  Y  e.  CC )
4923, 47, 48adddird 9411 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  +  ( 1  -  T
) )  x.  Y
)  =  ( ( T  x.  Y )  +  ( ( 1  -  T )  x.  Y ) ) )
5048mulid2d 9404 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( 1  x.  Y
)  =  Y )
5143, 49, 503eqtr3d 2483 . . . . 5  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  x.  Y )  +  ( ( 1  -  T
)  x.  Y ) )  =  Y )
5240, 51sylan9eqr 2497 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  =  Y )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  =  Y )
535adantr 465 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  =  Y )  ->  Y  e.  D )
5452, 53eqeltrd 2517 . . 3  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  X  =  Y )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  D )
559ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D
)
56 oveq1 6098 . . . . . . . . 9  |-  ( x  =  Y  ->  (
x [,] y )  =  ( Y [,] y ) )
5756sseq1d 3383 . . . . . . . 8  |-  ( x  =  Y  ->  (
( x [,] y
)  C_  D  <->  ( Y [,] y )  C_  D
) )
58 oveq2 6099 . . . . . . . . 9  |-  ( y  =  X  ->  ( Y [,] y )  =  ( Y [,] X
) )
5958sseq1d 3383 . . . . . . . 8  |-  ( y  =  X  ->  (
( Y [,] y
)  C_  D  <->  ( Y [,] X )  C_  D
) )
6057, 59rspc2v 3079 . . . . . . 7  |-  ( ( Y  e.  D  /\  X  e.  D )  ->  ( A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D  ->  ( Y [,] X
)  C_  D )
)
615, 3, 60syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( A. x  e.  D  A. y  e.  D  ( x [,] y )  C_  D  ->  ( Y [,] X
)  C_  D )
)
6261adantr 465 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  ( A. x  e.  D  A. y  e.  D  ( x [,] y
)  C_  D  ->  ( Y [,] X ) 
C_  D ) )
6355, 62mpd 15 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  ( Y [,] X )  C_  D )
644recnd 9412 . . . . . . . 8  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  ->  X  e.  CC )
6523, 64mulcld 9406 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( T  x.  X
)  e.  CC )
6647, 48mulcld 9406 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( 1  -  T )  x.  Y
)  e.  CC )
6765, 66addcomd 9571 . . . . . 6  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  x.  X )  +  ( ( 1  -  T
)  x.  Y ) )  =  ( ( ( 1  -  T
)  x.  Y )  +  ( T  x.  X ) ) )
6867adantr 465 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  =  ( ( ( 1  -  T )  x.  Y )  +  ( T  x.  X
) ) )
696adantr 465 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  Y  e.  RR )
704adantr 465 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  X  e.  RR )
71 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  Y  <  X )
72 simplr3 1032 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  T  e.  ( 0 [,] 1
) )
73 lincmb01cmp 11428 . . . . . 6  |-  ( ( ( Y  e.  RR  /\  X  e.  RR  /\  Y  <  X )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  Y )  +  ( T  x.  X
) )  e.  ( Y [,] X ) )
7469, 70, 71, 72, 73syl31anc 1221 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  (
( ( 1  -  T )  x.  Y
)  +  ( T  x.  X ) )  e.  ( Y [,] X ) )
7568, 74eqeltrd 2517 . . . 4  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  ( Y [,] X ) )
7663, 75sseldd 3357 . . 3  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  Y  < 
X )  ->  (
( T  x.  X
)  +  ( ( 1  -  T )  x.  Y ) )  e.  D )
7738, 54, 763jaodan 1284 . 2  |-  ( ( ( ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1 ) ) )  /\  ( X  <  Y  \/  X  =  Y  \/  Y  <  X ) )  -> 
( ( T  x.  X )  +  ( ( 1  -  T
)  x.  Y ) )  e.  D )
787, 77mpdan 668 1  |-  ( (
ph  /\  ( X  e.  D  /\  Y  e.  D  /\  T  e.  ( 0 [,] 1
) ) )  -> 
( ( T  x.  X )  +  ( ( 1  -  T
)  x.  Y ) )  e.  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715    C_ wss 3328   class class class wbr 4292  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287    < clt 9418    - cmin 9595   [,]cicc 11303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-po 4641  df-so 4642  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-rp 10992  df-icc 11307
This theorem is referenced by:  scvxcvx  22379  jensenlem2  22381  amgmlem  22383
  Copyright terms: Public domain W3C validator