Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval4N Structured version   Unicode version

Theorem cvrval4N 35586
Description: Binary relation expressing  Y covers  X. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrval4.b  |-  B  =  ( Base `  K
)
cvrval4.s  |-  .<  =  ( lt `  K )
cvrval4.j  |-  .\/  =  ( join `  K )
cvrval4.c  |-  C  =  (  <o  `  K )
cvrval4.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrval4N  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  .<  Y  /\  E. p  e.  A  ( X  .\/  p )  =  Y ) ) )
Distinct variable groups:    .< , p    A, p    B, p    C, p    K, p    X, p    Y, p
Allowed substitution hint:    .\/ ( p)

Proof of Theorem cvrval4N
StepHypRef Expression
1 cvrval4.b . . . . 5  |-  B  =  ( Base `  K
)
2 cvrval4.s . . . . 5  |-  .<  =  ( lt `  K )
3 cvrval4.c . . . . 5  |-  C  =  (  <o  `  K )
41, 2, 3cvrlt 35443 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X  .<  Y )
5 eqid 2392 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
6 cvrval4.j . . . . . . 7  |-  .\/  =  ( join `  K )
7 cvrval4.a . . . . . . 7  |-  A  =  ( Atoms `  K )
81, 5, 6, 3, 7cvrval3 35585 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <->  E. p  e.  A  ( -.  p ( le `  K ) X  /\  ( X  .\/  p )  =  Y ) ) )
9 simpr 459 . . . . . . 7  |-  ( ( -.  p ( le
`  K ) X  /\  ( X  .\/  p )  =  Y )  ->  ( X  .\/  p )  =  Y )
109reximi 2860 . . . . . 6  |-  ( E. p  e.  A  ( -.  p ( le
`  K ) X  /\  ( X  .\/  p )  =  Y )  ->  E. p  e.  A  ( X  .\/  p )  =  Y )
118, 10syl6bi 228 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  E. p  e.  A  ( X  .\/  p )  =  Y ) )
1211imp 427 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  E. p  e.  A  ( X  .\/  p )  =  Y )
134, 12jca 530 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( X  .<  Y  /\  E. p  e.  A  ( X  .\/  p )  =  Y ) )
1413ex 432 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  ( X  .<  Y  /\  E. p  e.  A  ( X  .\/  p )  =  Y ) ) )
15 simp1r 1019 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  X  .<  Y )
16 simp3 996 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  ( X  .\/  p )  =  Y )
1715, 16breqtrrd 4406 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  X  .<  ( X  .\/  p
) )
18 simp1l1 1087 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  K  e.  HL )
19 simp1l2 1088 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  X  e.  B )
20 simp2 995 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  p  e.  A )
211, 5, 6, 3, 7cvr1 35582 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  e.  B  /\  p  e.  A )  ->  ( -.  p ( le `  K ) X  <->  X C ( X 
.\/  p ) ) )
2218, 19, 20, 21syl3anc 1226 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  ( -.  p ( le `  K ) X  <->  X C
( X  .\/  p
) ) )
231, 2, 6, 3, 7cvr2N 35583 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  e.  B  /\  p  e.  A )  ->  ( X  .<  ( X  .\/  p )  <->  X C
( X  .\/  p
) ) )
2418, 19, 20, 23syl3anc 1226 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  ( X  .<  ( X  .\/  p )  <->  X C
( X  .\/  p
) ) )
2522, 24bitr4d 256 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  ( -.  p ( le `  K ) X  <->  X  .<  ( X  .\/  p ) ) )
2617, 25mpbird 232 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  -.  p ( le `  K ) X )
2726, 16jca 530 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( X  .\/  p )  =  Y )  ->  ( -.  p ( le `  K ) X  /\  ( X  .\/  p )  =  Y ) )
28273exp 1193 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( p  e.  A  ->  ( ( X  .\/  p )  =  Y  ->  ( -.  p ( le `  K ) X  /\  ( X  .\/  p )  =  Y ) ) ) )
2928reximdvai 2864 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( E. p  e.  A  ( X  .\/  p )  =  Y  ->  E. p  e.  A  ( -.  p ( le `  K ) X  /\  ( X  .\/  p )  =  Y ) ) )
3029expimpd 601 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .<  Y  /\  E. p  e.  A  ( X  .\/  p )  =  Y )  ->  E. p  e.  A  ( -.  p ( le `  K ) X  /\  ( X  .\/  p )  =  Y ) ) )
3130, 8sylibrd 234 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .<  Y  /\  E. p  e.  A  ( X  .\/  p )  =  Y )  ->  X C Y ) )
3214, 31impbid 191 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  .<  Y  /\  E. p  e.  A  ( X  .\/  p )  =  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836   E.wrex 2743   class class class wbr 4380   ` cfv 5509  (class class class)co 6214   Basecbs 14653   lecple 14728   ltcplt 15706   joincjn 15709    <o ccvr 35435   Atomscatm 35436   HLchlt 35523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-ral 2747  df-rex 2748  df-reu 2749  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-riota 6176  df-ov 6217  df-oprab 6218  df-preset 15693  df-poset 15711  df-plt 15724  df-lub 15740  df-glb 15741  df-join 15742  df-meet 15743  df-p0 15805  df-lat 15812  df-clat 15874  df-oposet 35349  df-ol 35351  df-oml 35352  df-covers 35439  df-ats 35440  df-atl 35471  df-cvlat 35495  df-hlat 35524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator