Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval3 Structured version   Unicode version

Theorem cvrval3 33366
Description: Binary relation expressing  Y covers  X. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
cvrval3.b  |-  B  =  ( Base `  K
)
cvrval3.l  |-  .<_  =  ( le `  K )
cvrval3.j  |-  .\/  =  ( join `  K )
cvrval3.c  |-  C  =  (  <o  `  K )
cvrval3.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrval3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <->  E. p  e.  A  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) ) )
Distinct variable groups:    A, p    B, p    C, p    K, p    .<_ , p    X, p    Y, p
Allowed substitution hint:    .\/ ( p)

Proof of Theorem cvrval3
StepHypRef Expression
1 cvrval3.b . . . . . 6  |-  B  =  ( Base `  K
)
2 eqid 2451 . . . . . 6  |-  ( lt
`  K )  =  ( lt `  K
)
3 cvrval3.c . . . . . 6  |-  C  =  (  <o  `  K )
41, 2, 3cvrlt 33224 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X ( lt
`  K ) Y )
5 cvrval3.l . . . . . 6  |-  .<_  =  ( le `  K )
6 cvrval3.j . . . . . 6  |-  .\/  =  ( join `  K )
7 cvrval3.a . . . . . 6  |-  A  =  ( Atoms `  K )
81, 5, 2, 6, 3, 7hlrelat3 33365 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X ( lt `  K ) Y )  ->  E. p  e.  A  ( X C ( X 
.\/  p )  /\  ( X  .\/  p ) 
.<_  Y ) )
94, 8syldan 470 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  E. p  e.  A  ( X C ( X 
.\/  p )  /\  ( X  .\/  p ) 
.<_  Y ) )
10 simp3l 1016 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  X C ( X  .\/  p ) )
11 simp1l1 1081 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  K  e.  HL )
12 simp1l2 1082 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  X  e.  B )
13 simp2 989 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  p  e.  A )
141, 5, 6, 3, 7cvr1 33363 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B  /\  p  e.  A )  ->  ( -.  p  .<_  X  <-> 
X C ( X 
.\/  p ) ) )
1511, 12, 13, 14syl3anc 1219 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  -> 
( -.  p  .<_  X  <-> 
X C ( X 
.\/  p ) ) )
1610, 15mpbird 232 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  -.  p  .<_  X )
17 hllat 33317 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
1811, 17syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  K  e.  Lat )
191, 7atbase 33243 . . . . . . . . . . 11  |-  ( p  e.  A  ->  p  e.  B )
20193ad2ant2 1010 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  p  e.  B )
211, 6latjcl 15332 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  .\/  p
)  e.  B )
2218, 12, 20, 21syl3anc 1219 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  -> 
( X  .\/  p
)  e.  B )
231, 2, 3cvrlt 33224 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( X  .\/  p )  e.  B )  /\  X C ( X  .\/  p ) )  ->  X ( lt `  K ) ( X 
.\/  p ) )
2411, 12, 22, 10, 23syl31anc 1222 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  X ( lt `  K ) ( X 
.\/  p ) )
25 simp3r 1017 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  -> 
( X  .\/  p
)  .<_  Y )
26 hlpos 33319 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Poset )
2711, 26syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  K  e.  Poset )
28 simp1l3 1083 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  Y  e.  B )
29 simp1r 1013 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  ->  X C Y )
301, 5, 2, 3cvrnbtwn2 33229 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .\/  p )  e.  B )  /\  X C Y )  -> 
( ( X ( lt `  K ) ( X  .\/  p
)  /\  ( X  .\/  p )  .<_  Y )  <-> 
( X  .\/  p
)  =  Y ) )
3127, 12, 28, 22, 29, 30syl131anc 1232 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  -> 
( ( X ( lt `  K ) ( X  .\/  p
)  /\  ( X  .\/  p )  .<_  Y )  <-> 
( X  .\/  p
)  =  Y ) )
3224, 25, 31mpbi2and 912 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  -> 
( X  .\/  p
)  =  Y )
3316, 32jca 532 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  /\  p  e.  A  /\  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) )  -> 
( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )
34333exp 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( p  e.  A  ->  ( ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y )  ->  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) ) ) )
3534reximdvai 2925 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  ( E. p  e.  A  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y )  ->  E. p  e.  A  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) ) )
369, 35mpd 15 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  E. p  e.  A  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )
3736ex 434 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  E. p  e.  A  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) ) )
38 simp3l 1016 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )  ->  -.  p  .<_  X )
39 simp11 1018 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )  ->  K  e.  HL )
40 simp12 1019 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )  ->  X  e.  B )
41 simp2 989 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )  ->  p  e.  A )
4239, 40, 41, 14syl3anc 1219 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )  ->  ( -.  p  .<_  X  <->  X C
( X  .\/  p
) ) )
4338, 42mpbid 210 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )  ->  X C ( X  .\/  p ) )
44 simp3r 1017 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )  ->  ( X  .\/  p )  =  Y )
4543, 44breqtrd 4417 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) )  ->  X C Y )
4645rexlimdv3a 2942 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( E. p  e.  A  ( -.  p  .<_  X  /\  ( X 
.\/  p )  =  Y )  ->  X C Y ) )
4737, 46impbid 191 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <->  E. p  e.  A  ( -.  p  .<_  X  /\  ( X  .\/  p )  =  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2796   class class class wbr 4393   ` cfv 5519  (class class class)co 6193   Basecbs 14285   lecple 14356   Posetcpo 15221   ltcplt 15222   joincjn 15225   Latclat 15326    <o ccvr 33216   Atomscatm 33217   HLchlt 33304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-poset 15227  df-plt 15239  df-lub 15255  df-glb 15256  df-join 15257  df-meet 15258  df-p0 15320  df-lat 15327  df-clat 15389  df-oposet 33130  df-ol 33132  df-oml 33133  df-covers 33220  df-ats 33221  df-atl 33252  df-cvlat 33276  df-hlat 33305
This theorem is referenced by:  cvrval4N  33367  cvrval5  33368  islln3  33463  llnexatN  33474  islpln3  33486  lplnexatN  33516  islvol3  33529  isline4N  33730  lhpexnle  33959
  Copyright terms: Public domain W3C validator