Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn2 Structured version   Visualization version   Unicode version

Theorem cvrnbtwn2 32853
Description: The covers relation implies no in-betweenness. (cvnbtwn2 27952 analog.) (Contributed by NM, 17-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b  |-  B  =  ( Base `  K
)
cvrletr.l  |-  .<_  =  ( le `  K )
cvrletr.s  |-  .<  =  ( lt `  K )
cvrletr.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrnbtwn2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<  Z  /\  Z  .<_  Y )  <->  Z  =  Y
) )

Proof of Theorem cvrnbtwn2
StepHypRef Expression
1 cvrletr.b . . . . . 6  |-  B  =  ( Base `  K
)
2 cvrletr.s . . . . . 6  |-  .<  =  ( lt `  K )
3 cvrletr.c . . . . . 6  |-  C  =  (  <o  `  K )
41, 2, 3cvrnbtwn 32849 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) )
543expia 1211 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X C Y  ->  -.  ( X  .<  Z  /\  Z  .<  Y ) ) )
6 iman 426 . . . . 5  |-  ( ( ( X  .<  Z  /\  Z  .<_  Y )  ->  Z  =  Y )  <->  -.  ( ( X  .<  Z  /\  Z  .<_  Y )  /\  -.  Z  =  Y ) )
7 simpl 459 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  K  e.  Poset
)
8 simpr3 1017 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  e.  B )
9 simpr2 1016 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Y  e.  B )
10 cvrletr.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
1110, 2pltval 16218 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  .<  Y  <->  ( Z  .<_  Y  /\  Z  =/= 
Y ) ) )
127, 8, 9, 11syl3anc 1269 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( Z  .<  Y  <->  ( Z  .<_  Y  /\  Z  =/=  Y
) ) )
13 df-ne 2626 . . . . . . . . . 10  |-  ( Z  =/=  Y  <->  -.  Z  =  Y )
1413anbi2i 701 . . . . . . . . 9  |-  ( ( Z  .<_  Y  /\  Z  =/=  Y )  <->  ( Z  .<_  Y  /\  -.  Z  =  Y ) )
1512, 14syl6bb 265 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( Z  .<  Y  <->  ( Z  .<_  Y  /\  -.  Z  =  Y ) ) )
1615anbi2d 711 . . . . . . 7  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Z  /\  Z  .<  Y )  <->  ( X  .<  Z  /\  ( Z 
.<_  Y  /\  -.  Z  =  Y ) ) ) )
17 anass 655 . . . . . . 7  |-  ( ( ( X  .<  Z  /\  Z  .<_  Y )  /\  -.  Z  =  Y
)  <->  ( X  .<  Z  /\  ( Z  .<_  Y  /\  -.  Z  =  Y ) ) )
1816, 17syl6rbbr 268 . . . . . 6  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( (
( X  .<  Z  /\  Z  .<_  Y )  /\  -.  Z  =  Y
)  <->  ( X  .<  Z  /\  Z  .<  Y ) ) )
1918notbid 296 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( -.  ( ( X  .<  Z  /\  Z  .<_  Y )  /\  -.  Z  =  Y )  <->  -.  ( X  .<  Z  /\  Z  .<  Y ) ) )
206, 19syl5rbb 262 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( -.  ( X  .<  Z  /\  Z  .<  Y )  <->  ( ( X  .<  Z  /\  Z  .<_  Y )  ->  Z  =  Y ) ) )
215, 20sylibd 218 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X C Y  ->  ( ( X  .<  Z  /\  Z  .<_  Y )  ->  Z  =  Y )
) )
22213impia 1206 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<  Z  /\  Z  .<_  Y )  ->  Z  =  Y ) )
231, 2, 3cvrlt 32848 . . . . . . 7  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X  .<  Y )
2423ex 436 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  X  .<  Y ) )
25243adant3r3 1220 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X C Y  ->  X  .<  Y ) )
26253impia 1206 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  X  .<  Y )
27 breq2 4409 . . . 4  |-  ( Z  =  Y  ->  ( X  .<  Z  <->  X  .<  Y ) )
2826, 27syl5ibrcom 226 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( Z  =  Y  ->  X  .<  Z ) )
291, 10posref 16208 . . . . . 6  |-  ( ( K  e.  Poset  /\  Y  e.  B )  ->  Y  .<_  Y )
30293ad2antr2 1175 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Y  .<_  Y )
31 breq1 4408 . . . . 5  |-  ( Z  =  Y  ->  ( Z  .<_  Y  <->  Y  .<_  Y ) )
3230, 31syl5ibrcom 226 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( Z  =  Y  ->  Z  .<_  Y ) )
33323adant3 1029 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( Z  =  Y  ->  Z  .<_  Y ) )
3428, 33jcad 536 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( Z  =  Y  ->  ( X  .<  Z  /\  Z  .<_  Y ) ) )
3522, 34impbid 194 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<  Z  /\  Z  .<_  Y )  <->  Z  =  Y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889    =/= wne 2624   class class class wbr 4405   ` cfv 5585   Basecbs 15133   lecple 15209   Posetcpo 16197   ltcplt 16198    <o ccvr 32840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-rab 2748  df-v 3049  df-sbc 3270  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-br 4406  df-opab 4465  df-mpt 4466  df-id 4752  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5549  df-fun 5587  df-fv 5593  df-preset 16185  df-poset 16203  df-plt 16216  df-covers 32844
This theorem is referenced by:  cvrval3  32990  cvrexchlem  32996
  Copyright terms: Public domain W3C validator