Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat4 Structured version   Unicode version

Theorem cvrat4 32920
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 27987 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat4.b  |-  B  =  ( Base `  K
)
cvrat4.l  |-  .<_  =  ( le `  K )
cvrat4.j  |-  .\/  =  ( join `  K )
cvrat4.z  |-  .0.  =  ( 0. `  K )
cvrat4.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrat4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
Distinct variable groups:    A, r    B, r    .\/ , r    K, r    .<_ , r    P, r    Q, r    X, r
Allowed substitution hint:    .0. ( r)

Proof of Theorem cvrat4
StepHypRef Expression
1 hlatl 32838 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
21adantr 466 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  AtLat )
3 simpr1 1011 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  X  e.  B )
4 cvrat4.b . . . . . . . . . . 11  |-  B  =  ( Base `  K
)
5 cvrat4.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
6 cvrat4.z . . . . . . . . . . 11  |-  .0.  =  ( 0. `  K )
7 cvrat4.a . . . . . . . . . . 11  |-  A  =  ( Atoms `  K )
84, 5, 6, 7atlex 32794 . . . . . . . . . 10  |-  ( ( K  e.  AtLat  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  E. r  e.  A  r  .<_  X )
983exp 1204 . . . . . . . . 9  |-  ( K  e.  AtLat  ->  ( X  e.  B  ->  ( X  =/=  .0.  ->  E. r  e.  A  r  .<_  X ) ) )
102, 3, 9sylc 62 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  =/=  .0.  ->  E. r  e.  A  r  .<_  X ) )
1110adantr 466 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  ( X  =/=  .0.  ->  E. r  e.  A  r  .<_  X ) )
12 simpll 758 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  r  e.  A )  ->  K  e.  HL )
13 simplr3 1049 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  r  e.  A )  ->  Q  e.  A )
14 simpr 462 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  r  e.  A )  ->  r  e.  A )
15 cvrat4.j . . . . . . . . . . . . . . 15  |-  .\/  =  ( join `  K )
165, 15, 7hlatlej1 32852 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  r  e.  A )  ->  Q  .<_  ( Q  .\/  r ) )
1712, 13, 14, 16syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  r  e.  A )  ->  Q  .<_  ( Q  .\/  r
) )
18 breq1 4364 . . . . . . . . . . . . 13  |-  ( P  =  Q  ->  ( P  .<_  ( Q  .\/  r )  <->  Q  .<_  ( Q  .\/  r ) ) )
1917, 18syl5ibr 224 . . . . . . . . . . . 12  |-  ( P  =  Q  ->  (
( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  r  e.  A )  ->  P  .<_  ( Q  .\/  r ) ) )
2019expd 437 . . . . . . . . . . 11  |-  ( P  =  Q  ->  (
( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
r  e.  A  ->  P  .<_  ( Q  .\/  r ) ) ) )
2120impcom 431 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  (
r  e.  A  ->  P  .<_  ( Q  .\/  r ) ) )
2221anim2d 567 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  (
( r  .<_  X  /\  r  e.  A )  ->  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
2322expcomd 439 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  (
r  e.  A  -> 
( r  .<_  X  -> 
( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
2423reximdvai 2831 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  ( E. r  e.  A  r  .<_  X  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
2511, 24syld 45 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  ( X  =/=  .0.  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
2625ex 435 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =  Q  ->  ( X  =/=  .0.  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
2726a1i 11 . . . 4  |-  ( P 
.<_  ( X  .\/  Q
)  ->  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A )
)  ->  ( P  =  Q  ->  ( X  =/=  .0.  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) ) )
2827com4l 87 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =  Q  ->  ( X  =/=  .0.  ->  ( P  .<_  ( X  .\/  Q )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) ) )
2928imp4a 592 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =  Q  ->  ( ( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
30 hllat 32841 . . . . . . . . . . . . . 14  |-  ( K  e.  HL  ->  K  e.  Lat )
3130adantr 466 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  Lat )
32 simpr3 1013 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  A )
334, 7atbase 32767 . . . . . . . . . . . . . 14  |-  ( Q  e.  A  ->  Q  e.  B )
3432, 33syl 17 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  B )
354, 5, 15latleeqj2 16248 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  ( Q  .<_  X  <->  ( X  .\/  Q )  =  X ) )
3631, 34, 3, 35syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q  .<_  X  <->  ( X  .\/  Q )  =  X ) )
3736biimpa 486 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  Q  .<_  X )  ->  ( X  .\/  Q )  =  X )
3837breq2d 4373 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  Q  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  <->  P  .<_  X ) )
3938biimpa 486 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q ) )  ->  P  .<_  X )
4039expl 622 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  P  .<_  X ) )
41 simpl 458 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  HL )
42 simpr2 1012 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  A )
435, 15, 7hlatlej2 32853 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  P  e.  A )  ->  P  .<_  ( Q  .\/  P ) )
4441, 32, 42, 43syl3anc 1264 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  .<_  ( Q  .\/  P
) )
4540, 44jctird 546 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P
) ) ) )
4645, 42jctild 545 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( P  e.  A  /\  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P ) ) ) ) )
4746impl 624 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q ) )  ->  ( P  e.  A  /\  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P ) ) ) )
48 breq1 4364 . . . . . . 7  |-  ( r  =  P  ->  (
r  .<_  X  <->  P  .<_  X ) )
49 oveq2 6252 . . . . . . . 8  |-  ( r  =  P  ->  ( Q  .\/  r )  =  ( Q  .\/  P
) )
5049breq2d 4373 . . . . . . 7  |-  ( r  =  P  ->  ( P  .<_  ( Q  .\/  r )  <->  P  .<_  ( Q  .\/  P ) ) )
5148, 50anbi12d 715 . . . . . 6  |-  ( r  =  P  ->  (
( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) )  <->  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P ) ) ) )
5251rspcev 3120 . . . . 5  |-  ( ( P  e.  A  /\  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P ) ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
5347, 52syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
5453adantrl 720 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  Q  .<_  X )  /\  ( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
5554exp31 607 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q  .<_  X  ->  (
( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
56 simpr 462 . . 3  |-  ( ( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  P  .<_  ( X  .\/  Q
) )
57 ioran 492 . . . . 5  |-  ( -.  ( P  =  Q  \/  Q  .<_  X )  <-> 
( -.  P  =  Q  /\  -.  Q  .<_  X ) )
58 df-ne 2596 . . . . . 6  |-  ( P  =/=  Q  <->  -.  P  =  Q )
5958anbi1i 699 . . . . 5  |-  ( ( P  =/=  Q  /\  -.  Q  .<_  X )  <-> 
( -.  P  =  Q  /\  -.  Q  .<_  X ) )
6057, 59bitr4i 255 . . . 4  |-  ( -.  ( P  =  Q  \/  Q  .<_  X )  <-> 
( P  =/=  Q  /\  -.  Q  .<_  X ) )
61 eqid 2423 . . . . . . . . . 10  |-  ( meet `  K )  =  (
meet `  K )
624, 5, 15, 61, 7cvrat3 32919 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A
) )
63623expd 1222 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =/=  Q  ->  ( -.  Q  .<_  X  -> 
( P  .<_  ( X 
.\/  Q )  -> 
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  A ) ) ) )
6463imp4c 594 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( P  =/= 
Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A
) )
654, 7atbase 32767 . . . . . . . . . . . . 13  |-  ( P  e.  A  ->  P  e.  B )
6642, 65syl 17 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  B )
674, 15latjcl 16235 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
6831, 66, 34, 67syl3anc 1264 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  e.  B )
694, 5, 61latmle1 16260 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X )
7031, 3, 68, 69syl3anc 1264 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  X )
7170adantr 466 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( X
( meet `  K )
( P  .\/  Q
) )  .<_  X )
72 simpll 758 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  K  e.  HL )
7363imp44 599 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( X
( meet `  K )
( P  .\/  Q
) )  e.  A
)
74 simplr2 1048 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  P  e.  A )
7534adantr 466 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  Q  e.  B )
7673, 74, 753jca 1185 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )
7772, 76jca 534 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  ( ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) ) )
784, 5, 61, 6, 7atnle 32795 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  X  e.  B )  ->  ( -.  Q  .<_  X  <->  ( Q
( meet `  K ) X )  =  .0.  ) )
792, 32, 3, 78syl3anc 1264 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  Q  .<_  X  <->  ( Q
( meet `  K ) X )  =  .0.  ) )
804, 61latmcom 16259 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  ( Q ( meet `  K ) X )  =  ( X (
meet `  K ) Q ) )
8131, 34, 3, 80syl3anc 1264 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q ( meet `  K
) X )  =  ( X ( meet `  K ) Q ) )
8281eqeq1d 2425 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q ( meet `  K ) X )  =  .0.  <->  ( X
( meet `  K ) Q )  =  .0.  ) )
8379, 82bitrd 256 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  Q  .<_  X  <->  ( X
( meet `  K ) Q )  =  .0.  ) )
844, 61latmcl 16236 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  B )
8531, 3, 68, 84syl3anc 1264 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  B
)
8685, 3, 343jca 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  B  /\  X  e.  B  /\  Q  e.  B ) )
8731, 86jca 534 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( K  e.  Lat  /\  (
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  B  /\  X  e.  B  /\  Q  e.  B ) ) )
884, 5, 61latmlem2 16266 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  B  /\  X  e.  B  /\  Q  e.  B
) )  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X  ->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  .<_  ( Q
( meet `  K ) X ) ) )
8987, 70, 88sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  .<_  ( Q ( meet `  K
) X ) )
9089, 81breqtrd 4386 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  .<_  ( X ( meet `  K
) Q ) )
91 breq2 4365 . . . . . . . . . . . . . . . 16  |-  ( ( X ( meet `  K
) Q )  =  .0.  ->  ( ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  .<_  ( X ( meet `  K
) Q )  <->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  .<_  .0.  )
)
9290, 91syl5ibcom 223 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X ( meet `  K ) Q )  =  .0.  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  .<_  .0.  ) )
93 hlop 32840 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  HL  ->  K  e.  OP )
9493adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  OP )
954, 61latmcl 16236 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  B
)  ->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  e.  B )
9631, 34, 85, 95syl3anc 1264 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  e.  B )
974, 5, 6ople0 32665 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OP  /\  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  e.  B )  ->  (
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  .<_  .0. 
<->  ( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  ) )
9894, 96, 97syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  .<_  .0. 
<->  ( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  ) )
9992, 98sylibd 217 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X ( meet `  K ) Q )  =  .0.  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  =  .0.  ) )
10083, 99sylbid 218 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  Q  .<_  X  -> 
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  ) )
101100imp 430 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  -.  Q  .<_  X )  -> 
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  )
102101adantrl 720 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( P  =/=  Q  /\  -.  Q  .<_  X ) )  ->  ( Q (
meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  =  .0.  )
103102adantrr 721 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  =  .0.  )
1044, 5, 61latmle2 16261 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  ( P  .\/  Q
) )
10531, 3, 68, 104syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  ( P 
.\/  Q ) )
1064, 15latjcom 16243 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
10731, 66, 34, 106syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
108105, 107breqtrd 4386 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  ( Q 
.\/  P ) )
109108adantr 466 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( X
( meet `  K )
( P  .\/  Q
) )  .<_  ( Q 
.\/  P ) )
11030adantr 466 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  K  e.  Lat )
111 simpr3 1013 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  Q  e.  B )
112 simpr1 1011 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A
)
1134, 7atbase 32767 . . . . . . . . . . . . . 14  |-  ( ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A  ->  ( X ( meet `  K ) ( P 
.\/  Q ) )  e.  B )
114112, 113syl 17 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  B
)
1154, 61latmcom 16259 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  B
)  ->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  =  ( ( X ( meet `  K
) ( P  .\/  Q ) ) ( meet `  K ) Q ) )
116110, 111, 114, 115syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  =  ( ( X (
meet `  K )
( P  .\/  Q
) ) ( meet `  K ) Q ) )
117116eqeq1d 2425 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  (
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  <->  ( ( X ( meet `  K
) ( P  .\/  Q ) ) ( meet `  K ) Q )  =  .0.  ) )
1184, 5, 15, 61, 6, 7hlexch3 32868 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
)  /\  ( ( X ( meet `  K
) ( P  .\/  Q ) ) ( meet `  K ) Q )  =  .0.  )  -> 
( ( X (
meet `  K )
( P  .\/  Q
) )  .<_  ( Q 
.\/  P )  ->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) )
1191183expia 1207 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  (
( ( X (
meet `  K )
( P  .\/  Q
) ) ( meet `  K ) Q )  =  .0.  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  ( Q  .\/  P
)  ->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) )
120117, 119sylbid 218 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  (
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  ->  ( ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  ( Q 
.\/  P )  ->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) )
12177, 103, 109, 120syl3c 63 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) )
12271, 121jca 534 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) )
123122ex 435 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( P  =/= 
Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) )
12464, 123jcad 535 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( P  =/= 
Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  A  /\  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) ) )
125 breq1 4364 . . . . . . . 8  |-  ( r  =  ( X (
meet `  K )
( P  .\/  Q
) )  ->  (
r  .<_  X  <->  ( X
( meet `  K )
( P  .\/  Q
) )  .<_  X ) )
126 oveq2 6252 . . . . . . . . 9  |-  ( r  =  ( X (
meet `  K )
( P  .\/  Q
) )  ->  ( Q  .\/  r )  =  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) )
127126breq2d 4373 . . . . . . . 8  |-  ( r  =  ( X (
meet `  K )
( P  .\/  Q
) )  ->  ( P  .<_  ( Q  .\/  r )  <->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) )
128125, 127anbi12d 715 . . . . . . 7  |-  ( r  =  ( X (
meet `  K )
( P  .\/  Q
) )  ->  (
( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) )  <->  ( ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) )
129128rspcev 3120 . . . . . 6  |-  ( ( ( X ( meet `  K ) ( P 
.\/  Q ) )  e.  A  /\  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
130124, 129syl6 34 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( P  =/= 
Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
131130expd 437 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  Q  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
13260, 131syl5bi 220 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  ( P  =  Q  \/  Q  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
13356, 132syl7 70 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  ( P  =  Q  \/  Q  .<_  X )  ->  ( ( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q
) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
13429, 55, 133ecase3d 951 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2594   E.wrex 2710   class class class wbr 4361   ` cfv 5539  (class class class)co 6244   Basecbs 15059   lecple 15135   joincjn 16127   meetcmee 16128   0.cp0 16221   Latclat 16229   OPcops 32650   Atomscatm 32741   AtLatcal 32742   HLchlt 32828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-op 3943  df-uni 4158  df-iun 4239  df-br 4362  df-opab 4421  df-mpt 4422  df-id 4706  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-riota 6206  df-ov 6247  df-oprab 6248  df-preset 16111  df-poset 16129  df-plt 16142  df-lub 16158  df-glb 16159  df-join 16160  df-meet 16161  df-p0 16223  df-lat 16230  df-clat 16292  df-oposet 32654  df-ol 32656  df-oml 32657  df-covers 32744  df-ats 32745  df-atl 32776  df-cvlat 32800  df-hlat 32829
This theorem is referenced by:  cvrat42  32921  ps-2  32955
  Copyright terms: Public domain W3C validator