Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat3 Structured version   Unicode version

Theorem cvrat3 34238
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 26991 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat3.b  |-  B  =  ( Base `  K
)
cvrat3.l  |-  .<_  =  ( le `  K )
cvrat3.j  |-  .\/  =  ( join `  K )
cvrat3.m  |-  ./\  =  ( meet `  K )
cvrat3.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrat3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A
) )

Proof of Theorem cvrat3
StepHypRef Expression
1 cvrat3.b . . . . . . . . . . . 12  |-  B  =  ( Base `  K
)
2 cvrat3.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
3 cvrat3.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
4 eqid 2467 . . . . . . . . . . . 12  |-  (  <o  `  K )  =  ( 
<o  `  K )
5 cvrat3.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
61, 2, 3, 4, 5cvr1 34206 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( -.  Q  .<_  X  <-> 
X (  <o  `  K
) ( X  .\/  Q ) ) )
763adant3r2 1206 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  Q  .<_  X  <->  X (  <o  `  K ) ( X  .\/  Q ) ) )
87biimpa 484 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  -.  Q  .<_  X )  ->  X (  <o  `  K
) ( X  .\/  Q ) )
98adantrr 716 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) ) )  ->  X (  <o  `  K
) ( X  .\/  Q ) )
10 hllat 34160 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  HL  ->  K  e.  Lat )
1110adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  Lat )
12 simpr2 1003 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  A )
131, 5atbase 34086 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  A  ->  P  e.  B )
1412, 13syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  B )
15 simpr3 1004 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  A )
161, 5atbase 34086 . . . . . . . . . . . . . . . . . 18  |-  ( Q  e.  A  ->  Q  e.  B )
1715, 16syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  B )
181, 3latjcom 15542 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
1911, 14, 17, 18syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
2019oveq2d 6298 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  ( P  .\/  Q ) )  =  ( X  .\/  ( Q 
.\/  P ) ) )
21 simpr1 1002 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  X  e.  B )
221, 3latjass 15578 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Q  e.  B  /\  P  e.  B
) )  ->  (
( X  .\/  Q
)  .\/  P )  =  ( X  .\/  ( Q  .\/  P ) ) )
2311, 21, 17, 14, 22syl13anc 1230 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  .\/  Q
)  .\/  P )  =  ( X  .\/  ( Q  .\/  P ) ) )
2420, 23eqtr4d 2511 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  ( P  .\/  Q ) )  =  ( ( X  .\/  Q
)  .\/  P )
)
2524adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  ( P  .\/  Q ) )  =  ( ( X  .\/  Q
)  .\/  P )
)
261, 3latjcl 15534 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Q  e.  B )  ->  ( X  .\/  Q
)  e.  B )
2711, 21, 17, 26syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  Q )  e.  B )
281, 2, 3latjlej2 15549 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( X  .\/  Q
)  e.  B  /\  ( X  .\/  Q )  e.  B ) )  ->  ( P  .<_  ( X  .\/  Q )  ->  ( ( X 
.\/  Q )  .\/  P )  .<_  ( ( X  .\/  Q )  .\/  ( X  .\/  Q ) ) ) )
2911, 14, 27, 27, 28syl13anc 1230 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .<_  ( X  .\/  Q )  ->  ( ( X  .\/  Q )  .\/  P )  .<_  ( ( X  .\/  Q )  .\/  ( X  .\/  Q ) ) ) )
3029imp 429 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X  .\/  Q
)  .\/  P )  .<_  ( ( X  .\/  Q )  .\/  ( X 
.\/  Q ) ) )
3125, 30eqbrtrd 4467 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  ( P  .\/  Q ) )  .<_  ( ( X  .\/  Q ) 
.\/  ( X  .\/  Q ) ) )
321, 3latjidm 15557 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  ( X  .\/  Q )  e.  B )  -> 
( ( X  .\/  Q )  .\/  ( X 
.\/  Q ) )  =  ( X  .\/  Q ) )
3311, 27, 32syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  .\/  Q
)  .\/  ( X  .\/  Q ) )  =  ( X  .\/  Q
) )
3433adantr 465 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X  .\/  Q
)  .\/  ( X  .\/  Q ) )  =  ( X  .\/  Q
) )
3531, 34breqtrd 4471 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  ( P  .\/  Q ) )  .<_  ( X 
.\/  Q ) )
36 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  HL )
372, 3, 5hlatlej2 34172 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )
3836, 12, 15, 37syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  .<_  ( P  .\/  Q
) )
391, 3latjcl 15534 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
4011, 14, 17, 39syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  e.  B )
411, 2, 3latjlej2 15549 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  ( Q  e.  B  /\  ( P  .\/  Q
)  e.  B  /\  X  e.  B )
)  ->  ( Q  .<_  ( P  .\/  Q
)  ->  ( X  .\/  Q )  .<_  ( X 
.\/  ( P  .\/  Q ) ) ) )
4211, 17, 40, 21, 41syl13anc 1230 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q  .<_  ( P  .\/  Q )  ->  ( X  .\/  Q )  .<_  ( X 
.\/  ( P  .\/  Q ) ) ) )
4338, 42mpd 15 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )
4443adantr 465 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )
451, 3latjcl 15534 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X  .\/  ( P  .\/  Q ) )  e.  B )
4611, 21, 40, 45syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  ( P  .\/  Q ) )  e.  B
)
471, 2latasymb 15537 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  ( X  .\/  ( P 
.\/  Q ) )  e.  B  /\  ( X  .\/  Q )  e.  B )  ->  (
( ( X  .\/  ( P  .\/  Q ) )  .<_  ( X  .\/  Q )  /\  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )  <->  ( X  .\/  ( P  .\/  Q ) )  =  ( X 
.\/  Q ) ) )
4811, 46, 27, 47syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( X  .\/  ( P  .\/  Q ) )  .<_  ( X  .\/  Q )  /\  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )  <->  ( X  .\/  ( P  .\/  Q ) )  =  ( X 
.\/  Q ) ) )
4948adantr 465 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( ( X  .\/  ( P  .\/  Q ) )  .<_  ( X  .\/  Q )  /\  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )  <->  ( X  .\/  ( P  .\/  Q ) )  =  ( X 
.\/  Q ) ) )
5035, 44, 49mpbi2and 919 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  ( P  .\/  Q ) )  =  ( X  .\/  Q ) )
5150breq2d 4459 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X (  <o  `  K
) ( X  .\/  ( P  .\/  Q ) )  <->  X (  <o  `  K
) ( X  .\/  Q ) ) )
5251adantrl 715 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) ) )  -> 
( X (  <o  `  K ) ( X 
.\/  ( P  .\/  Q ) )  <->  X (  <o  `  K ) ( X  .\/  Q ) ) )
539, 52mpbird 232 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) ) )  ->  X (  <o  `  K
) ( X  .\/  ( P  .\/  Q ) ) )
5453ex 434 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( -.  Q  .<_  X  /\  P  .<_  ( X 
.\/  Q ) )  ->  X (  <o  `  K ) ( X 
.\/  ( P  .\/  Q ) ) ) )
55 cvrat3.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
561, 3, 55, 4cvrexch 34216 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K
) ( P  .\/  Q )  <->  X (  <o  `  K
) ( X  .\/  ( P  .\/  Q ) ) ) )
5736, 21, 40, 56syl3anc 1228 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  ./\  ( P  .\/  Q ) ) (  <o  `  K )
( P  .\/  Q
)  <->  X (  <o  `  K
) ( X  .\/  ( P  .\/  Q ) ) ) )
5854, 57sylibrd 234 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( -.  Q  .<_  X  /\  P  .<_  ( X 
.\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K
) ( P  .\/  Q ) ) )
5958adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =/=  Q )  ->  (
( -.  Q  .<_  X  /\  P  .<_  ( X 
.\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K
) ( P  .\/  Q ) ) )
601, 55latmcl 15535 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X  ./\  ( P  .\/  Q ) )  e.  B )
6111, 21, 40, 60syl3anc 1228 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  B
)
621, 3, 4, 5cvrat2 34225 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( X  ./\  ( P  .\/  Q ) )  e.  B  /\  P  e.  A  /\  Q  e.  A )  /\  ( P  =/=  Q  /\  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K )
( P  .\/  Q
) ) )  -> 
( X  ./\  ( P  .\/  Q ) )  e.  A )
63623expia 1198 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( X  ./\  ( P  .\/  Q ) )  e.  B  /\  P  e.  A  /\  Q  e.  A )
)  ->  ( ( P  =/=  Q  /\  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K ) ( P 
.\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A ) )
6436, 61, 12, 15, 63syl13anc 1230 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K )
( P  .\/  Q
) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A
) )
6564expdimp 437 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =/=  Q )  ->  (
( X  ./\  ( P  .\/  Q ) ) (  <o  `  K )
( P  .\/  Q
)  ->  ( X  ./\  ( P  .\/  Q
) )  e.  A
) )
6659, 65syld 44 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =/=  Q )  ->  (
( -.  Q  .<_  X  /\  P  .<_  ( X 
.\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A ) )
6766exp4b 607 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =/=  Q  ->  ( -.  Q  .<_  X  -> 
( P  .<_  ( X 
.\/  Q )  -> 
( X  ./\  ( P  .\/  Q ) )  e.  A ) ) ) )
68673impd 1210 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Basecbs 14486   lecple 14558   joincjn 15427   meetcmee 15428   Latclat 15528    <o ccvr 34059   Atomscatm 34060   HLchlt 34147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148
This theorem is referenced by:  cvrat4  34239  2atjm  34241  1cvrat  34272  2llnma1b  34582
  Copyright terms: Public domain W3C validator