Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat Structured version   Visualization version   Unicode version

Theorem cvrat 32987
Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. (atcvati 28039 analog.) (Contributed by NM, 22-Nov-2011.)
Hypotheses
Ref Expression
cvrat.b  |-  B  =  ( Base `  K
)
cvrat.s  |-  .<  =  ( lt `  K )
cvrat.j  |-  .\/  =  ( join `  K )
cvrat.z  |-  .0.  =  ( 0. `  K )
cvrat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrat  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( P  .\/  Q ) )  ->  X  e.  A )
)

Proof of Theorem cvrat
StepHypRef Expression
1 cvrat.b . . . 4  |-  B  =  ( Base `  K
)
2 cvrat.s . . . 4  |-  .<  =  ( lt `  K )
3 cvrat.j . . . 4  |-  .\/  =  ( join `  K )
4 cvrat.z . . . 4  |-  .0.  =  ( 0. `  K )
5 cvrat.a . . . 4  |-  A  =  ( Atoms `  K )
61, 2, 3, 4, 5cvratlem 32986 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( P  .\/  Q
) ) )  -> 
( -.  P ( le `  K ) X  ->  X  e.  A ) )
7 hllat 32929 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
87adantr 467 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  Lat )
9 simpr2 1015 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  A )
101, 5atbase 32855 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  B )
119, 10syl 17 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  B )
12 simpr3 1016 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  A )
131, 5atbase 32855 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  B )
1412, 13syl 17 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  B )
151, 3latjcom 16305 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
168, 11, 14, 15syl3anc 1268 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
1716breq2d 4414 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .<  ( P  .\/  Q )  <->  X  .<  ( Q 
.\/  P ) ) )
1817anbi2d 710 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( P  .\/  Q ) )  <->  ( X  =/=  .0.  /\  X  .<  ( Q  .\/  P ) ) ) )
19 simpl 459 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  HL )
20 simpr1 1014 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  X  e.  B )
211, 2, 3, 4, 5cvratlem 32986 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( Q  .\/  P
) ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) )
2221ex 436 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( Q  .\/  P ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) ) )
2319, 20, 12, 9, 22syl13anc 1270 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( Q  .\/  P ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) ) )
2418, 23sylbid 219 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( P  .\/  Q ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) ) )
2524imp 431 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( P  .\/  Q
) ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) )
26 hlpos 32931 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Poset )
2726adantr 467 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  Poset )
281, 3latjcl 16297 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
298, 11, 14, 28syl3anc 1268 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  e.  B )
30 eqid 2451 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
311, 30, 2pltnle 16212 . . . . . . . . 9  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  /\  X  .<  ( P  .\/  Q ) )  ->  -.  ( P  .\/  Q ) ( le `  K
) X )
3231ex 436 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  ->  ( X  .<  ( P  .\/  Q )  ->  -.  ( P  .\/  Q ) ( le `  K ) X ) )
3327, 20, 29, 32syl3anc 1268 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .<  ( P  .\/  Q )  ->  -.  ( P  .\/  Q ) ( le `  K ) X ) )
341, 30, 3latjle12 16308 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  Q  e.  B  /\  X  e.  B
) )  ->  (
( P ( le
`  K ) X  /\  Q ( le
`  K ) X )  <->  ( P  .\/  Q ) ( le `  K ) X ) )
358, 11, 14, 20, 34syl13anc 1270 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P ( le
`  K ) X  /\  Q ( le
`  K ) X )  <->  ( P  .\/  Q ) ( le `  K ) X ) )
3635biimpd 211 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P ( le
`  K ) X  /\  Q ( le
`  K ) X )  ->  ( P  .\/  Q ) ( le
`  K ) X ) )
3733, 36nsyld 146 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .<  ( P  .\/  Q )  ->  -.  ( P ( le `  K ) X  /\  Q ( le `  K ) X ) ) )
38 ianor 491 . . . . . 6  |-  ( -.  ( P ( le
`  K ) X  /\  Q ( le
`  K ) X )  <->  ( -.  P
( le `  K
) X  \/  -.  Q ( le `  K ) X ) )
3937, 38syl6ib 230 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .<  ( P  .\/  Q )  ->  ( -.  P ( le `  K ) X  \/  -.  Q ( le `  K ) X ) ) )
4039imp 431 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  X  .<  ( P  .\/  Q
) )  ->  ( -.  P ( le `  K ) X  \/  -.  Q ( le `  K ) X ) )
4140adantrl 722 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( P  .\/  Q
) ) )  -> 
( -.  P ( le `  K ) X  \/  -.  Q
( le `  K
) X ) )
426, 25, 41mpjaod 383 . 2  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( P  .\/  Q
) ) )  ->  X  e.  A )
4342ex 436 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( P  .\/  Q ) )  ->  X  e.  A )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   class class class wbr 4402   ` cfv 5582  (class class class)co 6290   Basecbs 15121   lecple 15197   Posetcpo 16185   ltcplt 16186   joincjn 16189   0.cp0 16283   Latclat 16291   Atomscatm 32829   HLchlt 32916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-lat 16292  df-clat 16354  df-oposet 32742  df-ol 32744  df-oml 32745  df-covers 32832  df-ats 32833  df-atl 32864  df-cvlat 32888  df-hlat 32917
This theorem is referenced by:  cvrat2  32994
  Copyright terms: Public domain W3C validator