Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvr1 Structured version   Unicode version

Theorem cvr1 32407
Description: A Hilbert lattice has the covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 27673 analog.) (Contributed by NM, 17-Nov-2011.)
Hypotheses
Ref Expression
cvr1.b  |-  B  =  ( Base `  K
)
cvr1.l  |-  .<_  =  ( le `  K )
cvr1.j  |-  .\/  =  ( join `  K )
cvr1.c  |-  C  =  (  <o  `  K )
cvr1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvr1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <-> 
X C ( X 
.\/  P ) ) )

Proof of Theorem cvr1
StepHypRef Expression
1 hlomcmcv 32354 . 2  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
) )
2 cvr1.b . . 3  |-  B  =  ( Base `  K
)
3 cvr1.l . . 3  |-  .<_  =  ( le `  K )
4 cvr1.j . . 3  |-  .\/  =  ( join `  K )
5 cvr1.c . . 3  |-  C  =  (  <o  `  K )
6 cvr1.a . . 3  |-  A  =  ( Atoms `  K )
72, 3, 4, 5, 6cvlcvr1 32337 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <->  X C
( X  .\/  P
) ) )
81, 7syl3an1 1263 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <-> 
X C ( X 
.\/  P ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ w3a 974    = wceq 1405    e. wcel 1842   class class class wbr 4394   ` cfv 5568  (class class class)co 6277   Basecbs 14839   lecple 14914   joincjn 15895   CLatccla 16059   OMLcoml 32173    <o ccvr 32260   Atomscatm 32261   CvLatclc 32263   HLchlt 32348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-preset 15879  df-poset 15897  df-plt 15910  df-lub 15926  df-glb 15927  df-join 15928  df-meet 15929  df-p0 15991  df-lat 15998  df-clat 16060  df-oposet 32174  df-ol 32176  df-oml 32177  df-covers 32264  df-ats 32265  df-atl 32296  df-cvlat 32320  df-hlat 32349
This theorem is referenced by:  cvr2N  32408  hlrelat3  32409  cvrval3  32410  cvrval4N  32411  cvrexchlem  32416  cvratlem  32418  cvrat3  32439  3dim0  32454  2dim  32467  1cvrjat  32472  llncvrlpln2  32554  lplnexllnN  32561  lplncvrlvol2  32612  lhp2lt  32998
  Copyright terms: Public domain W3C validator