Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmtop1 Structured version   Unicode version

Theorem cvmtop1 27101
Description: Reverse closure for a covering map. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cvmtop1  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )

Proof of Theorem cvmtop1
StepHypRef Expression
1 n0i 3637 . . 3  |-  ( F  e.  ( C CovMap  J
)  ->  -.  ( C CovMap  J )  =  (/) )
2 fncvm 27098 . . . . 5  |- CovMap  Fn  ( Top  X.  Top )
3 fndm 5505 . . . . 5  |-  ( CovMap  Fn  ( Top  X.  Top )  ->  dom CovMap  =  ( Top  X. 
Top ) )
42, 3ax-mp 5 . . . 4  |-  dom CovMap  =  ( Top  X.  Top )
54ndmov 6242 . . 3  |-  ( -.  ( C  e.  Top  /\  J  e.  Top )  ->  ( C CovMap  J )  =  (/) )
61, 5nsyl2 127 . 2  |-  ( F  e.  ( C CovMap  J
)  ->  ( C  e.  Top  /\  J  e. 
Top ) )
76simpld 459 1  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   (/)c0 3632    X. cxp 4833   dom cdm 4835    Fn wfn 5408  (class class class)co 6086   Topctop 18473   CovMap ccvm 27096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-cvm 27097
This theorem is referenced by:  cvmsf1o  27113  cvmscld  27114  cvmsss2  27115  cvmopnlem  27119  cvmliftmolem1  27122  cvmliftlem8  27133  cvmlift2lem9a  27144  cvmlift2lem9  27152  cvmlift2lem11  27154  cvmlift2lem12  27155  cvmliftphtlem  27158  cvmlift3lem6  27165  cvmlift3lem8  27167  cvmlift3lem9  27168
  Copyright terms: Public domain W3C validator