Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsss2 Structured version   Visualization version   Unicode version

Theorem cvmsss2 30069
Description: An open subset of an evenly covered set is evenly covered. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmsss2  |-  ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  ->  (
( S `  U
)  =/=  (/)  ->  ( S `  V )  =/=  (/) ) )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    U, k, s, u, v    k, V, s, u, v
Allowed substitution hints:    S( v, u, k, s)

Proof of Theorem cvmsss2
Dummy variables  a 
b  t  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3732 . 2  |-  ( ( S `  U )  =/=  (/)  <->  E. x  x  e.  ( S `  U
) )
2 simpl2 1034 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  V  e.  J )
3 simpl1 1033 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  F  e.  ( C CovMap  J ) )
4 cvmtop1 30055 . . . . . . . . . . . 12  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
53, 4syl 17 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  C  e.  Top )
65adantr 472 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  C  e.  Top )
7 cvmcov.1 . . . . . . . . . . . . 13  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
87cvmsss 30062 . . . . . . . . . . . 12  |-  ( x  e.  ( S `  U )  ->  x  C_  C )
98adantl 473 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  x  C_  C )
109sselda 3418 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  y  e.  C )
11 cvmcn 30057 . . . . . . . . . . . . 13  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
123, 11syl 17 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  F  e.  ( C  Cn  J ) )
13 cnima 20358 . . . . . . . . . . . 12  |-  ( ( F  e.  ( C  Cn  J )  /\  V  e.  J )  ->  ( `' F " V )  e.  C
)
1412, 2, 13syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( `' F " V )  e.  C
)
1514adantr 472 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  ( `' F " V )  e.  C )
16 inopn 20006 . . . . . . . . . 10  |-  ( ( C  e.  Top  /\  y  e.  C  /\  ( `' F " V )  e.  C )  -> 
( y  i^i  ( `' F " V ) )  e.  C )
176, 10, 15, 16syl3anc 1292 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  (
y  i^i  ( `' F " V ) )  e.  C )
18 eqid 2471 . . . . . . . . 9  |-  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )
1917, 18fmptd 6061 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) : x --> C )
20 frn 5747 . . . . . . . 8  |-  ( ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) : x --> C  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  C )
2119, 20syl 17 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  C
)
227cvmsn0 30063 . . . . . . . . 9  |-  ( x  e.  ( S `  U )  ->  x  =/=  (/) )
2322adantl 473 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  x  =/=  (/) )
24 dmmptg 5339 . . . . . . . . . . . 12  |-  ( A. y  e.  x  (
y  i^i  ( `' F " V ) )  e.  _V  ->  dom  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  x )
25 inex1g 4539 . . . . . . . . . . . 12  |-  ( y  e.  x  ->  (
y  i^i  ( `' F " V ) )  e.  _V )
2624, 25mprg 2770 . . . . . . . . . . 11  |-  dom  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  x
2726eqeq1i 2476 . . . . . . . . . 10  |-  ( dom  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  (/)  <->  x  =  (/) )
28 dm0rn0 5057 . . . . . . . . . 10  |-  ( dom  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  (/)  <->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  (/) )
2927, 28bitr3i 259 . . . . . . . . 9  |-  ( x  =  (/)  <->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  (/) )
3029necon3bii 2695 . . . . . . . 8  |-  ( x  =/=  (/)  <->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) )
3123, 30sylib 201 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) )
3221, 31jca 541 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  C  /\  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) ) )
33 inss2 3644 . . . . . . . . . . . 12  |-  ( y  i^i  ( `' F " V ) )  C_  ( `' F " V )
34 elpw2g 4564 . . . . . . . . . . . . 13  |-  ( ( `' F " V )  e.  C  ->  (
( y  i^i  ( `' F " V ) )  e.  ~P ( `' F " V )  <-> 
( y  i^i  ( `' F " V ) )  C_  ( `' F " V ) ) )
3515, 34syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  (
( y  i^i  ( `' F " V ) )  e.  ~P ( `' F " V )  <-> 
( y  i^i  ( `' F " V ) )  C_  ( `' F " V ) ) )
3633, 35mpbiri 241 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  y  e.  x )  ->  (
y  i^i  ( `' F " V ) )  e.  ~P ( `' F " V ) )
3736, 18fmptd 6061 . . . . . . . . . 10  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) : x --> ~P ( `' F " V ) )
38 frn 5747 . . . . . . . . . 10  |-  ( ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) : x --> ~P ( `' F " V )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  ~P ( `' F " V ) )
3937, 38syl 17 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  ~P ( `' F " V ) )
40 sspwuni 4360 . . . . . . . . 9  |-  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  ~P ( `' F " V )  <->  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  ( `' F " V ) )
4139, 40sylib 201 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  ( `' F " V ) )
42 simpl3 1035 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  V  C_  U )
43 imass2 5210 . . . . . . . . . . . . . 14  |-  ( V 
C_  U  ->  ( `' F " V ) 
C_  ( `' F " U ) )
4442, 43syl 17 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( `' F " V )  C_  ( `' F " U ) )
457cvmsuni 30064 . . . . . . . . . . . . . 14  |-  ( x  e.  ( S `  U )  ->  U. x  =  ( `' F " U ) )
4645adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  U. x  =  ( `' F " U ) )
4744, 46sseqtr4d 3455 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( `' F " V )  C_  U. x
)
4847sselda 3418 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  -> 
z  e.  U. x
)
49 eqid 2471 . . . . . . . . . . . . . . . . 17  |-  ( t  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) )
50 ineq1 3618 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  t  ->  (
y  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) ) )
5150eqeq2d 2481 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  t  ->  (
( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) )  <->  ( t  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) ) ) )
5251rspcev 3136 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  x  /\  ( t  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) ) )  ->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) )
5349, 52mpan2 685 . . . . . . . . . . . . . . . 16  |-  ( t  e.  x  ->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) )
5453ad2antrl 742 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) )
55 vex 3034 . . . . . . . . . . . . . . . . 17  |-  t  e. 
_V
5655inex1 4537 . . . . . . . . . . . . . . . 16  |-  ( t  i^i  ( `' F " V ) )  e. 
_V
5718elrnmpt 5087 . . . . . . . . . . . . . . . 16  |-  ( ( t  i^i  ( `' F " V ) )  e.  _V  ->  ( ( t  i^i  ( `' F " V ) )  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) ) )
5856, 57ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( t  i^i  ( `' F " V ) )  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. y  e.  x  ( t  i^i  ( `' F " V ) )  =  ( y  i^i  ( `' F " V ) ) )
5954, 58sylibr 217 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  (
t  i^i  ( `' F " V ) )  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) )
60 simprr 774 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  z  e.  t )
61 simplr 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  z  e.  ( `' F " V ) )
6260, 61elind 3609 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  z  e.  ( t  i^i  ( `' F " V ) ) )
63 eleq2 2538 . . . . . . . . . . . . . . 15  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( z  e.  w  <->  z  e.  ( t  i^i  ( `' F " V ) ) ) )
6463rspcev 3136 . . . . . . . . . . . . . 14  |-  ( ( ( t  i^i  ( `' F " V ) )  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  /\  z  e.  ( t  i^i  ( `' F " V ) ) )  ->  E. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) z  e.  w )
6559, 62, 64syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  /\  ( t  e.  x  /\  z  e.  t
) )  ->  E. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) z  e.  w )
6665rexlimdvaa 2872 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  -> 
( E. t  e.  x  z  e.  t  ->  E. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) z  e.  w ) )
67 eluni2 4194 . . . . . . . . . . . 12  |-  ( z  e.  U. x  <->  E. t  e.  x  z  e.  t )
68 eluni2 4194 . . . . . . . . . . . 12  |-  ( z  e.  U. ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) z  e.  w )
6966, 67, 683imtr4g 278 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  -> 
( z  e.  U. x  ->  z  e.  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ) )
7048, 69mpd 15 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  z  e.  ( `' F " V ) )  -> 
z  e.  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) )
7170ex 441 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( z  e.  ( `' F " V )  ->  z  e.  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ) )
7271ssrdv 3424 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( `' F " V )  C_  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) )
7341, 72eqssd 3435 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( `' F " V ) )
74 eldifsn 4088 . . . . . . . . . . . 12  |-  ( z  e.  ( ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } )  <->  ( z  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  /\  z  =/=  (
t  i^i  ( `' F " V ) ) ) )
75 vex 3034 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
7618elrnmpt 5087 . . . . . . . . . . . . . . 15  |-  ( z  e.  _V  ->  (
z  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. y  e.  x  z  =  ( y  i^i  ( `' F " V ) ) ) )
7775, 76ax-mp 5 . . . . . . . . . . . . . 14  |-  ( z  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  <->  E. y  e.  x  z  =  ( y  i^i  ( `' F " V ) ) )
7850equcoms 1872 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  y  ->  (
y  i^i  ( `' F " V ) )  =  ( t  i^i  ( `' F " V ) ) )
7978necon3ai 2668 . . . . . . . . . . . . . . . . 17  |-  ( ( y  i^i  ( `' F " V ) )  =/=  ( t  i^i  ( `' F " V ) )  ->  -.  t  =  y
)
80 simpllr 777 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  x  e.  ( S `  U
) )
81 simplr 770 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  t  e.  x )
82 simpr 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  y  e.  x )
837cvmsdisj 30065 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( S `
 U )  /\  t  e.  x  /\  y  e.  x )  ->  ( t  =  y  \/  ( t  i^i  y )  =  (/) ) )
8480, 81, 82, 83syl3anc 1292 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  (
t  =  y  \/  ( t  i^i  y
)  =  (/) ) )
8584ord 384 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  ( -.  t  =  y  ->  ( t  i^i  y
)  =  (/) ) )
86 inss1 3643 . . . . . . . . . . . . . . . . . 18  |-  ( ( t  i^i  y )  i^i  ( `' F " V ) )  C_  ( t  i^i  y
)
87 sseq0 3769 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( t  i^i  y )  i^i  ( `' F " V ) )  C_  ( t  i^i  y )  /\  (
t  i^i  y )  =  (/) )  ->  (
( t  i^i  y
)  i^i  ( `' F " V ) )  =  (/) )
8886, 87mpan 684 . . . . . . . . . . . . . . . . 17  |-  ( ( t  i^i  y )  =  (/)  ->  ( ( t  i^i  y )  i^i  ( `' F " V ) )  =  (/) )
8979, 85, 88syl56 34 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  (
( y  i^i  ( `' F " V ) )  =/=  ( t  i^i  ( `' F " V ) )  -> 
( ( t  i^i  y )  i^i  ( `' F " V ) )  =  (/) ) )
90 neeq1 2705 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( z  =/=  (
t  i^i  ( `' F " V ) )  <-> 
( y  i^i  ( `' F " V ) )  =/=  ( t  i^i  ( `' F " V ) ) ) )
91 ineq2 3619 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( ( t  i^i  ( `' F " V ) )  i^i  z )  =  ( ( t  i^i  ( `' F " V ) )  i^i  ( y  i^i  ( `' F " V ) ) ) )
92 inindir 3641 . . . . . . . . . . . . . . . . . . 19  |-  ( ( t  i^i  y )  i^i  ( `' F " V ) )  =  ( ( t  i^i  ( `' F " V ) )  i^i  ( y  i^i  ( `' F " V ) ) )
9391, 92syl6eqr 2523 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( ( t  i^i  ( `' F " V ) )  i^i  z )  =  ( ( t  i^i  y
)  i^i  ( `' F " V ) ) )
9493eqeq1d 2473 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  <->  (
( t  i^i  y
)  i^i  ( `' F " V ) )  =  (/) ) )
9590, 94imbi12d 327 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  i^i  ( `' F " V ) )  -> 
( ( z  =/=  ( t  i^i  ( `' F " V ) )  ->  ( (
t  i^i  ( `' F " V ) )  i^i  z )  =  (/) )  <->  ( ( y  i^i  ( `' F " V ) )  =/=  ( t  i^i  ( `' F " V ) )  ->  ( (
t  i^i  y )  i^i  ( `' F " V ) )  =  (/) ) ) )
9689, 95syl5ibrcom 230 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( C CovMap  J
)  /\  V  e.  J  /\  V  C_  U
)  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  /\  y  e.  x )  ->  (
z  =  ( y  i^i  ( `' F " V ) )  -> 
( z  =/=  (
t  i^i  ( `' F " V ) )  ->  ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) ) )
9796rexlimdva 2871 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( E. y  e.  x  z  =  ( y  i^i  ( `' F " V ) )  -> 
( z  =/=  (
t  i^i  ( `' F " V ) )  ->  ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) ) )
9877, 97syl5bi 225 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
z  e.  ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  ->  (
z  =/=  ( t  i^i  ( `' F " V ) )  -> 
( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) ) )
9998impd 438 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( z  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  /\  z  =/=  ( t  i^i  ( `' F " V ) ) )  ->  (
( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) )
10074, 99syl5bi 225 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } )  -> 
( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) )
101100ralrimiv 2808 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { ( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) )
102 inss1 3643 . . . . . . . . . . . . 13  |-  ( t  i^i  ( `' F " V ) )  C_  t
103 resabs1 5139 . . . . . . . . . . . . 13  |-  ( ( t  i^i  ( `' F " V ) )  C_  t  ->  ( ( F  |`  t
)  |`  ( t  i^i  ( `' F " V ) ) )  =  ( F  |`  ( t  i^i  ( `' F " V ) ) ) )
104102, 103ax-mp 5 . . . . . . . . . . . 12  |-  ( ( F  |`  t )  |`  ( t  i^i  ( `' F " V ) ) )  =  ( F  |`  ( t  i^i  ( `' F " V ) ) )
1057cvmshmeo 30066 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( S `
 U )  /\  t  e.  x )  ->  ( F  |`  t
)  e.  ( ( Ct  t ) Homeo ( Jt  U ) ) )
106105adantll 728 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  t )  e.  ( ( Ct  t )
Homeo ( Jt  U ) ) )
1075adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  C  e.  Top )
1089sselda 3418 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  t  e.  C )
109 elssuni 4219 . . . . . . . . . . . . . . . 16  |-  ( t  e.  C  ->  t  C_ 
U. C )
110108, 109syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  t  C_ 
U. C )
111 eqid 2471 . . . . . . . . . . . . . . . 16  |-  U. C  =  U. C
112111restuni 20255 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  Top  /\  t  C_  U. C )  ->  t  =  U. ( Ct  t ) )
113107, 110, 112syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  t  =  U. ( Ct  t ) )
114102, 113syl5sseq 3466 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
t  i^i  ( `' F " V ) ) 
C_  U. ( Ct  t ) )
115 eqid 2471 . . . . . . . . . . . . . 14  |-  U. ( Ct  t )  =  U. ( Ct  t )
116115hmeores 20863 . . . . . . . . . . . . 13  |-  ( ( ( F  |`  t
)  e.  ( ( Ct  t ) Homeo ( Jt  U ) )  /\  (
t  i^i  ( `' F " V ) ) 
C_  U. ( Ct  t ) )  ->  ( ( F  |`  t )  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) ) Homeo ( ( Jt  U )t  ( ( F  |`  t ) " (
t  i^i  ( `' F " V ) ) ) ) ) )
117106, 114, 116syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( F  |`  t
)  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) )
Homeo ( ( Jt  U )t  ( ( F  |`  t
) " ( t  i^i  ( `' F " V ) ) ) ) ) )
118104, 117syl5eqelr 2554 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) )
Homeo ( ( Jt  U )t  ( ( F  |`  t
) " ( t  i^i  ( `' F " V ) ) ) ) ) )
119102a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
t  i^i  ( `' F " V ) ) 
C_  t )
120 simpr 468 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  t  e.  x )
121 restabs 20258 . . . . . . . . . . . . 13  |-  ( ( C  e.  Top  /\  ( t  i^i  ( `' F " V ) )  C_  t  /\  t  e.  x )  ->  ( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) )  =  ( Ct  ( t  i^i  ( `' F " V ) ) ) )
122107, 119, 120, 121syl3anc 1292 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( Ct  t )t  ( t  i^i  ( `' F " V ) ) )  =  ( Ct  ( t  i^i  ( `' F " V ) ) ) )
123 incom 3616 . . . . . . . . . . . . . . . . 17  |-  ( t  i^i  ( `' F " V ) )  =  ( ( `' F " V )  i^i  t
)
124 cnvresima 5331 . . . . . . . . . . . . . . . . 17  |-  ( `' ( F  |`  t
) " V )  =  ( ( `' F " V )  i^i  t )
125123, 124eqtr4i 2496 . . . . . . . . . . . . . . . 16  |-  ( t  i^i  ( `' F " V ) )  =  ( `' ( F  |`  t ) " V
)
126125imaeq2i 5172 . . . . . . . . . . . . . . 15  |-  ( ( F  |`  t ) " ( t  i^i  ( `' F " V ) ) )  =  ( ( F  |`  t ) " ( `' ( F  |`  t ) " V
) )
1273adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  F  e.  ( C CovMap  J ) )
128 simplr 770 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  x  e.  ( S `  U
) )
1297cvmsf1o 30067 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( C CovMap  J )  /\  x  e.  ( S `  U
)  /\  t  e.  x )  ->  ( F  |`  t ) : t -1-1-onto-> U )
130127, 128, 120, 129syl3anc 1292 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  t ) : t -1-1-onto-> U )
131 f1ofo 5835 . . . . . . . . . . . . . . . . 17  |-  ( ( F  |`  t ) : t -1-1-onto-> U  ->  ( F  |`  t ) : t
-onto-> U )
132130, 131syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  t ) : t -onto-> U )
13342adantr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  V  C_  U )
134 foimacnv 5845 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  |`  t
) : t -onto-> U  /\  V  C_  U
)  ->  ( ( F  |`  t ) "
( `' ( F  |`  t ) " V
) )  =  V )
135132, 133, 134syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( F  |`  t
) " ( `' ( F  |`  t
) " V ) )  =  V )
136126, 135syl5eq 2517 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( F  |`  t
) " ( t  i^i  ( `' F " V ) ) )  =  V )
137136oveq2d 6324 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( Jt  U )t  ( ( F  |`  t ) " (
t  i^i  ( `' F " V ) ) ) )  =  ( ( Jt  U )t  V ) )
138 cvmtop2 30056 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( C CovMap  J
)  ->  J  e.  Top )
1393, 138syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  J  e.  Top )
1407cvmsrcl 30059 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( S `  U )  ->  U  e.  J )
141140adantl 473 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  U  e.  J )
142 restabs 20258 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  V  C_  U  /\  U  e.  J )  ->  (
( Jt  U )t  V )  =  ( Jt  V ) )
143139, 42, 141, 142syl3anc 1292 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( ( Jt  U )t  V )  =  ( Jt  V ) )
144143adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( Jt  U )t  V )  =  ( Jt  V ) )
145137, 144eqtrd 2505 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( Jt  U )t  ( ( F  |`  t ) " (
t  i^i  ( `' F " V ) ) ) )  =  ( Jt  V ) )
146122, 145oveq12d 6326 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  (
( ( Ct  t )t  ( t  i^i  ( `' F " V ) ) ) Homeo ( ( Jt  U )t  ( ( F  |`  t ) " (
t  i^i  ( `' F " V ) ) ) ) )  =  ( ( Ct  ( t  i^i  ( `' F " V ) ) )
Homeo ( Jt  V ) ) )
147118, 146eleqtrd 2551 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) )
148101, 147jca 541 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  /\  t  e.  x )  ->  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) )
149148ralrimiva 2809 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  A. t  e.  x  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { ( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  (
t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) )
15056rgenw 2768 . . . . . . . . 9  |-  A. t  e.  x  ( t  i^i  ( `' F " V ) )  e. 
_V
15150cbvmptv 4488 . . . . . . . . . 10  |-  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( t  e.  x  |->  ( t  i^i  ( `' F " V ) ) )
152 sneq 3969 . . . . . . . . . . . . 13  |-  ( w  =  ( t  i^i  ( `' F " V ) )  ->  { w }  =  { ( t  i^i  ( `' F " V ) ) } )
153152difeq2d 3540 . . . . . . . . . . . 12  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
)  =  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) )
154 ineq1 3618 . . . . . . . . . . . . 13  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( w  i^i  z
)  =  ( ( t  i^i  ( `' F " V ) )  i^i  z ) )
155154eqeq1d 2473 . . . . . . . . . . . 12  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ( w  i^i  z )  =  (/)  <->  (
( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) )
156153, 155raleqbidv 2987 . . . . . . . . . . 11  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  <->  A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/) ) )
157 reseq2 5106 . . . . . . . . . . . 12  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( F  |`  w
)  =  ( F  |`  ( t  i^i  ( `' F " V ) ) ) )
158 oveq2 6316 . . . . . . . . . . . . 13  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( Ct  w )  =  ( Ct  ( t  i^i  ( `' F " V ) ) ) )
159158oveq1d 6323 . . . . . . . . . . . 12  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ( Ct  w )
Homeo ( Jt  V ) )  =  ( ( Ct  ( t  i^i  ( `' F " V ) ) )
Homeo ( Jt  V ) ) )
160157, 159eleq12d 2543 . . . . . . . . . . 11  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ( F  |`  w )  e.  ( ( Ct  w ) Homeo ( Jt  V ) )  <->  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) )
Homeo ( Jt  V ) ) ) )
161156, 160anbi12d 725 . . . . . . . . . 10  |-  ( w  =  ( t  i^i  ( `' F " V ) )  -> 
( ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) )  <->  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) ) )
162151, 161ralrnmpt 6046 . . . . . . . . 9  |-  ( A. t  e.  x  (
t  i^i  ( `' F " V ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
w } ) ( w  i^i  z )  =  (/)  /\  ( F  |`  w )  e.  ( ( Ct  w )
Homeo ( Jt  V ) ) )  <->  A. t  e.  x  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { ( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  (
t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) ) )
163150, 162ax-mp 5 . . . . . . . 8  |-  ( A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) )  <->  A. t  e.  x  ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
( t  i^i  ( `' F " V ) ) } ) ( ( t  i^i  ( `' F " V ) )  i^i  z )  =  (/)  /\  ( F  |`  ( t  i^i  ( `' F " V ) ) )  e.  ( ( Ct  ( t  i^i  ( `' F " V ) ) ) Homeo ( Jt  V ) ) ) )
164149, 163sylibr 217 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  \  {
w } ) ( w  i^i  z )  =  (/)  /\  ( F  |`  w )  e.  ( ( Ct  w )
Homeo ( Jt  V ) ) ) )
16573, 164jca 541 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( U. ran  (
y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( `' F " V )  /\  A. w  e. 
ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) ) ) )
1667cvmscbv 30053 . . . . . . . 8  |-  S  =  ( a  e.  J  |->  { b  e.  ( ~P C  \  { (/)
} )  |  ( U. b  =  ( `' F " a )  /\  A. w  e.  b  ( A. z  e.  ( b  \  {
w } ) ( w  i^i  z )  =  (/)  /\  ( F  |`  w )  e.  ( ( Ct  w )
Homeo ( Jt  a ) ) ) ) } )
167166cvmsval 30061 . . . . . . 7  |-  ( C  e.  Top  ->  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  e.  ( S `  V )  <-> 
( V  e.  J  /\  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
C_  C  /\  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) )  /\  ( U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( `' F " V )  /\  A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) ) ) ) ) )
1685, 167syl 17 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  e.  ( S `  V )  <->  ( V  e.  J  /\  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  C_  C  /\  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =/=  (/) )  /\  ( U. ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  =  ( `' F " V )  /\  A. w  e.  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) ( A. z  e.  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) ) 
\  { w }
) ( w  i^i  z )  =  (/)  /\  ( F  |`  w
)  e.  ( ( Ct  w ) Homeo ( Jt  V ) ) ) ) ) ) )
1692, 32, 165, 168mpbir3and 1213 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  ->  ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  e.  ( S `  V ) )
170 ne0i 3728 . . . . 5  |-  ( ran  ( y  e.  x  |->  ( y  i^i  ( `' F " V ) ) )  e.  ( S `  V )  ->  ( S `  V )  =/=  (/) )
171169, 170syl 17 . . . 4  |-  ( ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  /\  x  e.  ( S `  U ) )  -> 
( S `  V
)  =/=  (/) )
172171ex 441 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  ->  (
x  e.  ( S `
 U )  -> 
( S `  V
)  =/=  (/) ) )
173172exlimdv 1787 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  ->  ( E. x  x  e.  ( S `  U )  ->  ( S `  V )  =/=  (/) ) )
1741, 173syl5bi 225 1  |-  ( ( F  e.  ( C CovMap  J )  /\  V  e.  J  /\  V  C_  U )  ->  (
( S `  U
)  =/=  (/)  ->  ( S `  V )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031    \ cdif 3387    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   U.cuni 4190    |-> cmpt 4454   `'ccnv 4838   dom cdm 4839   ran crn 4840    |` cres 4841   "cima 4842   -->wf 5585   -onto->wfo 5587   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308   ↾t crest 15397   Topctop 19994    Cn ccn 20317   Homeochmeo 20845   CovMap ccvm 30050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-fin 7591  df-fi 7943  df-rest 15399  df-topgen 15420  df-top 19998  df-bases 19999  df-topon 20000  df-cn 20320  df-hmeo 20847  df-cvm 30051
This theorem is referenced by:  cvmcov2  30070
  Copyright terms: Public domain W3C validator