Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsss Structured version   Unicode version

Theorem cvmsss 27323
Description: An even covering is a subset of the topology of the domain (i.e. a collection of open sets). (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmsss  |-  ( T  e.  ( S `  U )  ->  T  C_  C )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    U, k, s, u, v    T, s, u, v
Allowed substitution hints:    S( v, u, k, s)    T( k)

Proof of Theorem cvmsss
StepHypRef Expression
1 cvmcov.1 . . . 4  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
21cvmsi 27321 . . 3  |-  ( T  e.  ( S `  U )  ->  ( U  e.  J  /\  ( T  C_  C  /\  T  =/=  (/) )  /\  ( U. T  =  ( `' F " U )  /\  A. u  e.  T  ( A. v  e.  ( T  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) ) )
32simp2d 1001 . 2  |-  ( T  e.  ( S `  U )  ->  ( T  C_  C  /\  T  =/=  (/) ) )
43simpld 459 1  |-  ( T  e.  ( S `  U )  ->  T  C_  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   {crab 2803    \ cdif 3436    i^i cin 3438    C_ wss 3439   (/)c0 3748   ~Pcpw 3971   {csn 3988   U.cuni 4202    |-> cmpt 4461   `'ccnv 4950    |` cres 4953   "cima 4954   ` cfv 5529  (class class class)co 6203   ↾t crest 14482   Homeochmeo 19468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fv 5537  df-ov 6206
This theorem is referenced by:  cvmsf1o  27328  cvmscld  27329  cvmsss2  27330  cvmfolem  27335  cvmliftmolem1  27337  cvmliftmolem2  27338  cvmliftlem6  27346  cvmlift2lem9a  27359  cvmlift2lem9  27367  cvmlift3lem6  27380
  Copyright terms: Public domain W3C validator