Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsi Structured version   Unicode version

Theorem cvmsi 27154
Description: One direction of cvmsval 27155. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmsi  |-  ( T  e.  ( S `  U )  ->  ( U  e.  J  /\  ( T  C_  C  /\  T  =/=  (/) )  /\  ( U. T  =  ( `' F " U )  /\  A. u  e.  T  ( A. v  e.  ( T  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) ) )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    U, k, s, u, v    T, s, u, v
Allowed substitution hints:    S( v, u, k, s)    T( k)

Proof of Theorem cvmsi
StepHypRef Expression
1 cvmcov.1 . . 3  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
21cvmsrcl 27153 . 2  |-  ( T  e.  ( S `  U )  ->  U  e.  J )
3 imaeq2 5165 . . . . . . . . . . 11  |-  ( k  =  U  ->  ( `' F " k )  =  ( `' F " U ) )
43eqeq2d 2454 . . . . . . . . . 10  |-  ( k  =  U  ->  ( U. s  =  ( `' F " k )  <->  U. s  =  ( `' F " U ) ) )
5 oveq2 6099 . . . . . . . . . . . . . 14  |-  ( k  =  U  ->  ( Jt  k )  =  ( Jt  U ) )
65oveq2d 6107 . . . . . . . . . . . . 13  |-  ( k  =  U  ->  (
( Ct  u ) Homeo ( Jt  k ) )  =  ( ( Ct  u ) Homeo ( Jt  U ) ) )
76eleq2d 2510 . . . . . . . . . . . 12  |-  ( k  =  U  ->  (
( F  |`  u
)  e.  ( ( Ct  u ) Homeo ( Jt  k ) )  <->  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) ) )
87anbi2d 703 . . . . . . . . . . 11  |-  ( k  =  U  ->  (
( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) )  <->  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) )
98ralbidv 2735 . . . . . . . . . 10  |-  ( k  =  U  ->  ( A. u  e.  s 
( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) )  <->  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) )
104, 9anbi12d 710 . . . . . . . . 9  |-  ( k  =  U  ->  (
( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  k ) ) ) )  <-> 
( U. s  =  ( `' F " U )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) ) ) ) )
1110rabbidv 2964 . . . . . . . 8  |-  ( k  =  U  ->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  k ) ) ) ) }  =  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F " U )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) ) ) } )
1211, 1fvmptss2 5793 . . . . . . 7  |-  ( S `
 U )  C_  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F " U )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) ) ) }
1312sseli 3352 . . . . . 6  |-  ( T  e.  ( S `  U )  ->  T  e.  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " U )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) } )
14 unieq 4099 . . . . . . . . 9  |-  ( s  =  T  ->  U. s  =  U. T )
1514eqeq1d 2451 . . . . . . . 8  |-  ( s  =  T  ->  ( U. s  =  ( `' F " U )  <->  U. T  =  ( `' F " U ) ) )
16 difeq1 3467 . . . . . . . . . . 11  |-  ( s  =  T  ->  (
s  \  { u } )  =  ( T  \  { u } ) )
1716raleqdv 2923 . . . . . . . . . 10  |-  ( s  =  T  ->  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/) 
<-> 
A. v  e.  ( T  \  { u } ) ( u  i^i  v )  =  (/) ) )
1817anbi1d 704 . . . . . . . . 9  |-  ( s  =  T  ->  (
( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) )  <-> 
( A. v  e.  ( T  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) )
1918raleqbi1dv 2925 . . . . . . . 8  |-  ( s  =  T  ->  ( A. u  e.  s 
( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) )  <->  A. u  e.  T  ( A. v  e.  ( T  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) ) ) )
2015, 19anbi12d 710 . . . . . . 7  |-  ( s  =  T  ->  (
( U. s  =  ( `' F " U )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) ) )  <-> 
( U. T  =  ( `' F " U )  /\  A. u  e.  T  ( A. v  e.  ( T  \  { u }
) ( u  i^i  v )  =  (/)  /\  ( F  |`  u
)  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) ) ) ) )
2120elrab 3117 . . . . . 6  |-  ( T  e.  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F " U )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) ) ) }  <->  ( T  e.  ( ~P C  \  { (/) } )  /\  ( U. T  =  ( `' F " U )  /\  A. u  e.  T  ( A. v  e.  ( T  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) ) )
2213, 21sylib 196 . . . . 5  |-  ( T  e.  ( S `  U )  ->  ( T  e.  ( ~P C  \  { (/) } )  /\  ( U. T  =  ( `' F " U )  /\  A. u  e.  T  ( A. v  e.  ( T  \  { u }
) ( u  i^i  v )  =  (/)  /\  ( F  |`  u
)  e.  ( ( Ct  u ) Homeo ( Jt  U ) ) ) ) ) )
2322simpld 459 . . . 4  |-  ( T  e.  ( S `  U )  ->  T  e.  ( ~P C  \  { (/) } ) )
24 eldifsn 4000 . . . 4  |-  ( T  e.  ( ~P C  \  { (/) } )  <->  ( T  e.  ~P C  /\  T  =/=  (/) ) )
2523, 24sylib 196 . . 3  |-  ( T  e.  ( S `  U )  ->  ( T  e.  ~P C  /\  T  =/=  (/) ) )
26 elpwi 3869 . . . 4  |-  ( T  e.  ~P C  ->  T  C_  C )
2726anim1i 568 . . 3  |-  ( ( T  e.  ~P C  /\  T  =/=  (/) )  -> 
( T  C_  C  /\  T  =/=  (/) ) )
2825, 27syl 16 . 2  |-  ( T  e.  ( S `  U )  ->  ( T  C_  C  /\  T  =/=  (/) ) )
2922simprd 463 . 2  |-  ( T  e.  ( S `  U )  ->  ( U. T  =  ( `' F " U )  /\  A. u  e.  T  ( A. v  e.  ( T  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) )
302, 28, 293jca 1168 1  |-  ( T  e.  ( S `  U )  ->  ( U  e.  J  /\  ( T  C_  C  /\  T  =/=  (/) )  /\  ( U. T  =  ( `' F " U )  /\  A. u  e.  T  ( A. v  e.  ( T  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  U ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   {crab 2719    \ cdif 3325    i^i cin 3327    C_ wss 3328   (/)c0 3637   ~Pcpw 3860   {csn 3877   U.cuni 4091    e. cmpt 4350   `'ccnv 4839    |` cres 4842   "cima 4843   ` cfv 5418  (class class class)co 6091   ↾t crest 14359   Homeochmeo 19326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fv 5426  df-ov 6094
This theorem is referenced by:  cvmsval  27155  cvmsss  27156  cvmsn0  27157  cvmsuni  27158  cvmsdisj  27159  cvmshmeo  27160
  Copyright terms: Public domain W3C validator