Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsf1o Structured version   Unicode version

Theorem cvmsf1o 29556
Description:  F, localized to an element of an even covering of  U, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmsf1o  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( F  |`  A ) : A -1-1-onto-> U )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    U, k, s, u, v    T, s, u, v    u, A, v
Allowed substitution hints:    A( k, s)    S( v, u, k, s)    T( k)

Proof of Theorem cvmsf1o
StepHypRef Expression
1 cvmtop1 29544 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
213ad2ant1 1018 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  C  e.  Top )
3 eqid 2402 . . . . 5  |-  U. C  =  U. C
43toptopon 19724 . . . 4  |-  ( C  e.  Top  <->  C  e.  (TopOn `  U. C ) )
52, 4sylib 196 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  C  e.  (TopOn `  U. C ) )
6 cvmcov.1 . . . . . . 7  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
76cvmsss 29551 . . . . . 6  |-  ( T  e.  ( S `  U )  ->  T  C_  C )
873ad2ant2 1019 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  T  C_  C )
9 simp3 999 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  A  e.  T )
108, 9sseldd 3442 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  A  e.  C )
11 elssuni 4219 . . . 4  |-  ( A  e.  C  ->  A  C_ 
U. C )
1210, 11syl 17 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  A  C_ 
U. C )
13 resttopon 19953 . . 3  |-  ( ( C  e.  (TopOn `  U. C )  /\  A  C_ 
U. C )  -> 
( Ct  A )  e.  (TopOn `  A ) )
145, 12, 13syl2anc 659 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( Ct  A )  e.  (TopOn `  A ) )
15 cvmtop2 29545 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  J  e.  Top )
16153ad2ant1 1018 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  J  e.  Top )
17 eqid 2402 . . . . 5  |-  U. J  =  U. J
1817toptopon 19724 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1916, 18sylib 196 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  J  e.  (TopOn `  U. J ) )
206cvmsrcl 29548 . . . . 5  |-  ( T  e.  ( S `  U )  ->  U  e.  J )
21203ad2ant2 1019 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  U  e.  J )
22 elssuni 4219 . . . 4  |-  ( U  e.  J  ->  U  C_ 
U. J )
2321, 22syl 17 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  U  C_ 
U. J )
24 resttopon 19953 . . 3  |-  ( ( J  e.  (TopOn `  U. J )  /\  U  C_ 
U. J )  -> 
( Jt  U )  e.  (TopOn `  U ) )
2519, 23, 24syl2anc 659 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( Jt  U )  e.  (TopOn `  U ) )
266cvmshmeo 29555 . . 3  |-  ( ( T  e.  ( S `
 U )  /\  A  e.  T )  ->  ( F  |`  A )  e.  ( ( Ct  A ) Homeo ( Jt  U ) ) )
27263adant1 1015 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( F  |`  A )  e.  ( ( Ct  A )
Homeo ( Jt  U ) ) )
28 hmeof1o2 20554 . 2  |-  ( ( ( Ct  A )  e.  (TopOn `  A )  /\  ( Jt  U )  e.  (TopOn `  U )  /\  ( F  |`  A )  e.  ( ( Ct  A )
Homeo ( Jt  U ) ) )  ->  ( F  |`  A ) : A -1-1-onto-> U
)
2914, 25, 27, 28syl3anc 1230 1  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( F  |`  A ) : A -1-1-onto-> U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2753   {crab 2757    \ cdif 3410    i^i cin 3412    C_ wss 3413   (/)c0 3737   ~Pcpw 3954   {csn 3971   U.cuni 4190    |-> cmpt 4452   `'ccnv 4821    |` cres 4824   "cima 4825   -1-1-onto->wf1o 5567   ` cfv 5568  (class class class)co 6277   ↾t crest 15033   Topctop 19684  TopOnctopon 19685   Homeochmeo 20544   CovMap ccvm 29539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-fin 7557  df-fi 7904  df-rest 15035  df-topgen 15056  df-top 19689  df-bases 19691  df-topon 19692  df-cn 20019  df-hmeo 20546  df-cvm 29540
This theorem is referenced by:  cvmsss2  29558  cvmfolem  29563  cvmliftmolem1  29565  cvmliftlem6  29574  cvmliftlem9  29577  cvmlift2lem9a  29587
  Copyright terms: Public domain W3C validator