Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmopnlem Structured version   Unicode version

Theorem cvmopnlem 28987
Description: Lemma for cvmopn 28989. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmseu.1  |-  B  = 
U. C
Assertion
Ref Expression
cvmopnlem  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  ( F " A )  e.  J )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    u, A, v    v, B
Allowed substitution hints:    A( k, s)    B( u, k, s)    S( v, u, k, s)

Proof of Theorem cvmopnlem
Dummy variables  t  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 751 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  F  e.  ( C CovMap  J ) )
2 cvmcn 28971 . . . . . . . . . 10  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
32adantr 463 . . . . . . . . 9  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  F  e.  ( C  Cn  J
) )
4 cvmseu.1 . . . . . . . . . 10  |-  B  = 
U. C
5 eqid 2454 . . . . . . . . . 10  |-  U. J  =  U. J
64, 5cnf 19914 . . . . . . . . 9  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
73, 6syl 16 . . . . . . . 8  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  F : B --> U. J )
87adantr 463 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  F : B
--> U. J )
9 elssuni 4264 . . . . . . . . . 10  |-  ( A  e.  C  ->  A  C_ 
U. C )
109, 4syl6sseqr 3536 . . . . . . . . 9  |-  ( A  e.  C  ->  A  C_  B )
1110adantl 464 . . . . . . . 8  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  A  C_  B )
1211sselda 3489 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  z  e.  B )
138, 12ffvelrnd 6008 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  ( F `  z )  e.  U. J )
14 cvmcov.1 . . . . . . 7  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
1514, 5cvmcov 28972 . . . . . 6  |-  ( ( F  e.  ( C CovMap  J )  /\  ( F `  z )  e.  U. J )  ->  E. t  e.  J  ( ( F `  z )  e.  t  /\  ( S `  t )  =/=  (/) ) )
161, 13, 15syl2anc 659 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  E. t  e.  J  ( ( F `  z )  e.  t  /\  ( S `  t )  =/=  (/) ) )
17 n0 3793 . . . . . . . 8  |-  ( ( S `  t )  =/=  (/)  <->  E. w  w  e.  ( S `  t
) )
18 inss2 3705 . . . . . . . . . . . . . . 15  |-  ( A  i^i  ( iota_ x  e.  w  z  e.  x
) )  C_  ( iota_ x  e.  w  z  e.  x )
19 resima2 5295 . . . . . . . . . . . . . . 15  |-  ( ( A  i^i  ( iota_ x  e.  w  z  e.  x ) )  C_  ( iota_ x  e.  w  z  e.  x )  ->  ( ( F  |`  ( iota_ x  e.  w  z  e.  x )
) " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  =  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) ) )
2018, 19ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( F  |`  ( iota_ x  e.  w  z  e.  x ) ) "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  =  ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )
21 simprr 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  w  e.  ( S `  t ) )
221adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  F  e.  ( C CovMap  J ) )
2312adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  z  e.  B
)
24 simprl 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F `  z )  e.  t )
25 eqid 2454 . . . . . . . . . . . . . . . . . . 19  |-  ( iota_ x  e.  w  z  e.  x )  =  (
iota_ x  e.  w  z  e.  x )
2614, 4, 25cvmsiota 28986 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( C CovMap  J )  /\  (
w  e.  ( S `
 t )  /\  z  e.  B  /\  ( F `  z )  e.  t ) )  ->  ( ( iota_ x  e.  w  z  e.  x )  e.  w  /\  z  e.  ( iota_ x  e.  w  z  e.  x ) ) )
2722, 21, 23, 24, 26syl13anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( ( iota_ x  e.  w  z  e.  x )  e.  w  /\  z  e.  ( iota_ x  e.  w  z  e.  x ) ) )
2827simpld 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( iota_ x  e.  w  z  e.  x
)  e.  w )
2914cvmshmeo 28980 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( S `
 t )  /\  ( iota_ x  e.  w  z  e.  x )  e.  w )  ->  ( F  |`  ( iota_ x  e.  w  z  e.  x
) )  e.  ( ( Ct  ( iota_ x  e.  w  z  e.  x
) ) Homeo ( Jt  t ) ) )
3021, 28, 29syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F  |`  ( iota_ x  e.  w  z  e.  x )
)  e.  ( ( Ct  ( iota_ x  e.  w  z  e.  x )
) Homeo ( Jt  t ) ) )
31 cvmtop1 28969 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
3222, 31syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  C  e.  Top )
33 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  A  e.  C
)
34 elrestr 14918 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  Top  /\  ( iota_ x  e.  w  z  e.  x )  e.  w  /\  A  e.  C )  ->  ( A  i^i  ( iota_ x  e.  w  z  e.  x
) )  e.  ( Ct  ( iota_ x  e.  w  z  e.  x )
) )
3532, 28, 33, 34syl3anc 1226 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( A  i^i  ( iota_ x  e.  w  z  e.  x )
)  e.  ( Ct  (
iota_ x  e.  w  z  e.  x )
) )
36 hmeoima 20432 . . . . . . . . . . . . . . 15  |-  ( ( ( F  |`  ( iota_ x  e.  w  z  e.  x ) )  e.  ( ( Ct  (
iota_ x  e.  w  z  e.  x )
) Homeo ( Jt  t ) )  /\  ( A  i^i  ( iota_ x  e.  w  z  e.  x
) )  e.  ( Ct  ( iota_ x  e.  w  z  e.  x )
) )  ->  (
( F  |`  ( iota_ x  e.  w  z  e.  x ) )
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  ( Jt  t ) )
3730, 35, 36syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( ( F  |`  ( iota_ x  e.  w  z  e.  x )
) " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  e.  ( Jt  t ) )
3820, 37syl5eqelr 2547 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  e.  ( Jt  t ) )
39 cvmtop2 28970 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( C CovMap  J
)  ->  J  e.  Top )
4039adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  J  e.  Top )
4140ad2antrr 723 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  J  e.  Top )
4214cvmsrcl 28973 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( S `  t )  ->  t  e.  J )
4342ad2antll 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  t  e.  J
)
44 restopn2 19845 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  t  e.  J )  ->  ( ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  e.  ( Jt  t )  <->  ( ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  J  /\  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  C_  t ) ) )
4541, 43, 44syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  ( Jt  t )  <->  ( ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  J  /\  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  C_  t ) ) )
4638, 45mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  J  /\  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  C_  t ) )
4746simpld 457 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  e.  J )
48 ffn 5713 . . . . . . . . . . . . . 14  |-  ( F : B --> U. J  ->  F  Fn  B )
497, 48syl 16 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  F  Fn  B )
5049ad2antrr 723 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  F  Fn  B
)
51 inss1 3704 . . . . . . . . . . . . 13  |-  ( A  i^i  ( iota_ x  e.  w  z  e.  x
) )  C_  A
5233, 10syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  A  C_  B
)
5351, 52syl5ss 3500 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( A  i^i  ( iota_ x  e.  w  z  e.  x )
)  C_  B )
54 simplr 753 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  z  e.  A
)
5527simprd 461 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  z  e.  (
iota_ x  e.  w  z  e.  x )
)
5654, 55elind 3674 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  z  e.  ( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )
57 fnfvima 6125 . . . . . . . . . . . 12  |-  ( ( F  Fn  B  /\  ( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) 
C_  B  /\  z  e.  ( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  ->  ( F `  z )  e.  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) ) )
5850, 53, 56, 57syl3anc 1226 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F `  z )  e.  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) ) )
59 imass2 5360 . . . . . . . . . . . 12  |-  ( ( A  i^i  ( iota_ x  e.  w  z  e.  x ) )  C_  A  ->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  C_  ( F " A ) )
6051, 59mp1i 12 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  C_  ( F " A ) )
61 eleq2 2527 . . . . . . . . . . . . 13  |-  ( y  =  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  ->  ( ( F `  z )  e.  y  <->  ( F `  z )  e.  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) ) ) )
62 sseq1 3510 . . . . . . . . . . . . 13  |-  ( y  =  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  ->  ( y  C_  ( F " A
)  <->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  C_  ( F " A ) ) )
6361, 62anbi12d 708 . . . . . . . . . . . 12  |-  ( y  =  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  ->  ( (
( F `  z
)  e.  y  /\  y  C_  ( F " A ) )  <->  ( ( F `  z )  e.  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  /\  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  C_  ( F " A ) ) ) )
6463rspcev 3207 . . . . . . . . . . 11  |-  ( ( ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  e.  J  /\  ( ( F `  z )  e.  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  /\  ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  C_  ( F " A ) ) )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) )
6547, 58, 60, 64syl12anc 1224 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) )
6665expr 613 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  ( F `  z )  e.  t )  ->  (
w  e.  ( S `
 t )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
6766exlimdv 1729 . . . . . . . 8  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  ( F `  z )  e.  t )  ->  ( E. w  w  e.  ( S `  t )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
6817, 67syl5bi 217 . . . . . . 7  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  ( F `  z )  e.  t )  ->  (
( S `  t
)  =/=  (/)  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) ) )
6968expimpd 601 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  ( (
( F `  z
)  e.  t  /\  ( S `  t )  =/=  (/) )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) ) )
7069rexlimdvw 2949 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  ( E. t  e.  J  (
( F `  z
)  e.  t  /\  ( S `  t )  =/=  (/) )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) ) )
7116, 70mpd 15 . . . 4  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) )
7271ralrimiva 2868 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  A. z  e.  A  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) )
73 eleq1 2526 . . . . . . 7  |-  ( x  =  ( F `  z )  ->  (
x  e.  y  <->  ( F `  z )  e.  y ) )
7473anbi1d 702 . . . . . 6  |-  ( x  =  ( F `  z )  ->  (
( x  e.  y  /\  y  C_  ( F " A ) )  <-> 
( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
7574rexbidv 2965 . . . . 5  |-  ( x  =  ( F `  z )  ->  ( E. y  e.  J  ( x  e.  y  /\  y  C_  ( F
" A ) )  <->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
7675ralima 6127 . . . 4  |-  ( ( F  Fn  B  /\  A  C_  B )  -> 
( A. x  e.  ( F " A
) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) )  <->  A. z  e.  A  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
7749, 11, 76syl2anc 659 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  ( A. x  e.  ( F " A ) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) )  <->  A. z  e.  A  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) ) )
7872, 77mpbird 232 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  A. x  e.  ( F " A
) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) ) )
79 eltop2 19644 . . 3  |-  ( J  e.  Top  ->  (
( F " A
)  e.  J  <->  A. x  e.  ( F " A
) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) ) ) )
8040, 79syl 16 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  (
( F " A
)  e.  J  <->  A. x  e.  ( F " A
) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) ) ) )
8178, 80mpbird 232 1  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  ( F " A )  e.  J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808    \ cdif 3458    i^i cin 3460    C_ wss 3461   (/)c0 3783   ~Pcpw 3999   {csn 4016   U.cuni 4235    |-> cmpt 4497   `'ccnv 4987    |` cres 4990   "cima 4991    Fn wfn 5565   -->wf 5566   ` cfv 5570   iota_crio 6231  (class class class)co 6270   ↾t crest 14910   Topctop 19561    Cn ccn 19892   Homeochmeo 20420   CovMap ccvm 28964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-fin 7513  df-fi 7863  df-rest 14912  df-topgen 14933  df-top 19566  df-bases 19568  df-topon 19569  df-cn 19895  df-hmeo 20422  df-cvm 28965
This theorem is referenced by:  cvmopn  28989
  Copyright terms: Public domain W3C validator