Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmopnlem Structured version   Unicode version

Theorem cvmopnlem 27081
Description: Lemma for cvmopn 27083. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmseu.1  |-  B  = 
U. C
Assertion
Ref Expression
cvmopnlem  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  ( F " A )  e.  J )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    u, A, v    v, B
Allowed substitution hints:    A( k, s)    B( u, k, s)    S( v, u, k, s)

Proof of Theorem cvmopnlem
Dummy variables  t  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 748 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  F  e.  ( C CovMap  J ) )
2 cvmcn 27065 . . . . . . . . . 10  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
32adantr 462 . . . . . . . . 9  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  F  e.  ( C  Cn  J
) )
4 cvmseu.1 . . . . . . . . . 10  |-  B  = 
U. C
5 eqid 2441 . . . . . . . . . 10  |-  U. J  =  U. J
64, 5cnf 18750 . . . . . . . . 9  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
73, 6syl 16 . . . . . . . 8  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  F : B --> U. J )
87adantr 462 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  F : B
--> U. J )
9 elssuni 4118 . . . . . . . . . 10  |-  ( A  e.  C  ->  A  C_ 
U. C )
109, 4syl6sseqr 3400 . . . . . . . . 9  |-  ( A  e.  C  ->  A  C_  B )
1110adantl 463 . . . . . . . 8  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  A  C_  B )
1211sselda 3353 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  z  e.  B )
138, 12ffvelrnd 5841 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  ( F `  z )  e.  U. J )
14 cvmcov.1 . . . . . . 7  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
1514, 5cvmcov 27066 . . . . . 6  |-  ( ( F  e.  ( C CovMap  J )  /\  ( F `  z )  e.  U. J )  ->  E. t  e.  J  ( ( F `  z )  e.  t  /\  ( S `  t )  =/=  (/) ) )
161, 13, 15syl2anc 656 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  E. t  e.  J  ( ( F `  z )  e.  t  /\  ( S `  t )  =/=  (/) ) )
17 n0 3643 . . . . . . . 8  |-  ( ( S `  t )  =/=  (/)  <->  E. w  w  e.  ( S `  t
) )
18 inss2 3568 . . . . . . . . . . . . . . 15  |-  ( A  i^i  ( iota_ x  e.  w  z  e.  x
) )  C_  ( iota_ x  e.  w  z  e.  x )
19 resima2 5140 . . . . . . . . . . . . . . 15  |-  ( ( A  i^i  ( iota_ x  e.  w  z  e.  x ) )  C_  ( iota_ x  e.  w  z  e.  x )  ->  ( ( F  |`  ( iota_ x  e.  w  z  e.  x )
) " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  =  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) ) )
2018, 19ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( F  |`  ( iota_ x  e.  w  z  e.  x ) ) "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  =  ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )
21 simprr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  w  e.  ( S `  t ) )
221adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  F  e.  ( C CovMap  J ) )
2312adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  z  e.  B
)
24 simprl 750 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F `  z )  e.  t )
25 eqid 2441 . . . . . . . . . . . . . . . . . . 19  |-  ( iota_ x  e.  w  z  e.  x )  =  (
iota_ x  e.  w  z  e.  x )
2614, 4, 25cvmsiota 27080 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( C CovMap  J )  /\  (
w  e.  ( S `
 t )  /\  z  e.  B  /\  ( F `  z )  e.  t ) )  ->  ( ( iota_ x  e.  w  z  e.  x )  e.  w  /\  z  e.  ( iota_ x  e.  w  z  e.  x ) ) )
2722, 21, 23, 24, 26syl13anc 1215 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( ( iota_ x  e.  w  z  e.  x )  e.  w  /\  z  e.  ( iota_ x  e.  w  z  e.  x ) ) )
2827simpld 456 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( iota_ x  e.  w  z  e.  x
)  e.  w )
2914cvmshmeo 27074 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( S `
 t )  /\  ( iota_ x  e.  w  z  e.  x )  e.  w )  ->  ( F  |`  ( iota_ x  e.  w  z  e.  x
) )  e.  ( ( Ct  ( iota_ x  e.  w  z  e.  x
) ) Homeo ( Jt  t ) ) )
3021, 28, 29syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F  |`  ( iota_ x  e.  w  z  e.  x )
)  e.  ( ( Ct  ( iota_ x  e.  w  z  e.  x )
) Homeo ( Jt  t ) ) )
31 cvmtop1 27063 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
3222, 31syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  C  e.  Top )
33 simpllr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  A  e.  C
)
34 elrestr 14363 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  Top  /\  ( iota_ x  e.  w  z  e.  x )  e.  w  /\  A  e.  C )  ->  ( A  i^i  ( iota_ x  e.  w  z  e.  x
) )  e.  ( Ct  ( iota_ x  e.  w  z  e.  x )
) )
3532, 28, 33, 34syl3anc 1213 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( A  i^i  ( iota_ x  e.  w  z  e.  x )
)  e.  ( Ct  (
iota_ x  e.  w  z  e.  x )
) )
36 hmeoima 19238 . . . . . . . . . . . . . . 15  |-  ( ( ( F  |`  ( iota_ x  e.  w  z  e.  x ) )  e.  ( ( Ct  (
iota_ x  e.  w  z  e.  x )
) Homeo ( Jt  t ) )  /\  ( A  i^i  ( iota_ x  e.  w  z  e.  x
) )  e.  ( Ct  ( iota_ x  e.  w  z  e.  x )
) )  ->  (
( F  |`  ( iota_ x  e.  w  z  e.  x ) )
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  ( Jt  t ) )
3730, 35, 36syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( ( F  |`  ( iota_ x  e.  w  z  e.  x )
) " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  e.  ( Jt  t ) )
3820, 37syl5eqelr 2526 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  e.  ( Jt  t ) )
39 cvmtop2 27064 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( C CovMap  J
)  ->  J  e.  Top )
4039adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  J  e.  Top )
4140ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  J  e.  Top )
4214cvmsrcl 27067 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( S `  t )  ->  t  e.  J )
4342ad2antll 723 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  t  e.  J
)
44 restopn2 18681 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  t  e.  J )  ->  ( ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  e.  ( Jt  t )  <->  ( ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  J  /\  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  C_  t ) ) )
4541, 43, 44syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  ( Jt  t )  <->  ( ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  J  /\  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  C_  t ) ) )
4638, 45mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  e.  J  /\  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  C_  t ) )
4746simpld 456 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  e.  J )
48 ffn 5556 . . . . . . . . . . . . . 14  |-  ( F : B --> U. J  ->  F  Fn  B )
497, 48syl 16 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  F  Fn  B )
5049ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  F  Fn  B
)
51 inss1 3567 . . . . . . . . . . . . 13  |-  ( A  i^i  ( iota_ x  e.  w  z  e.  x
) )  C_  A
5233, 10syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  A  C_  B
)
5351, 52syl5ss 3364 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( A  i^i  ( iota_ x  e.  w  z  e.  x )
)  C_  B )
54 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  z  e.  A
)
5527simprd 460 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  z  e.  (
iota_ x  e.  w  z  e.  x )
)
5654, 55elind 3537 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  z  e.  ( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )
57 fnfvima 5952 . . . . . . . . . . . 12  |-  ( ( F  Fn  B  /\  ( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) 
C_  B  /\  z  e.  ( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  ->  ( F `  z )  e.  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) ) )
5850, 53, 56, 57syl3anc 1213 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F `  z )  e.  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) ) )
59 imass2 5201 . . . . . . . . . . . 12  |-  ( ( A  i^i  ( iota_ x  e.  w  z  e.  x ) )  C_  A  ->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  C_  ( F " A ) )
6051, 59mp1i 12 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  C_  ( F " A ) )
61 eleq2 2502 . . . . . . . . . . . . 13  |-  ( y  =  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  ->  ( ( F `  z )  e.  y  <->  ( F `  z )  e.  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) ) ) )
62 sseq1 3374 . . . . . . . . . . . . 13  |-  ( y  =  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  ->  ( y  C_  ( F " A
)  <->  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  C_  ( F " A ) ) )
6361, 62anbi12d 705 . . . . . . . . . . . 12  |-  ( y  =  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  ->  ( (
( F `  z
)  e.  y  /\  y  C_  ( F " A ) )  <->  ( ( F `  z )  e.  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  /\  ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  C_  ( F " A ) ) ) )
6463rspcev 3070 . . . . . . . . . . 11  |-  ( ( ( F " ( A  i^i  ( iota_ x  e.  w  z  e.  x
) ) )  e.  J  /\  ( ( F `  z )  e.  ( F "
( A  i^i  ( iota_ x  e.  w  z  e.  x ) ) )  /\  ( F
" ( A  i^i  ( iota_ x  e.  w  z  e.  x )
) )  C_  ( F " A ) ) )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) )
6547, 58, 60, 64syl12anc 1211 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  (
( F `  z
)  e.  t  /\  w  e.  ( S `  t ) ) )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) )
6665expr 612 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  ( F `  z )  e.  t )  ->  (
w  e.  ( S `
 t )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
6766exlimdv 1695 . . . . . . . 8  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  ( F `  z )  e.  t )  ->  ( E. w  w  e.  ( S `  t )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
6817, 67syl5bi 217 . . . . . . 7  |-  ( ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C
)  /\  z  e.  A )  /\  ( F `  z )  e.  t )  ->  (
( S `  t
)  =/=  (/)  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) ) )
6968expimpd 600 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  ( (
( F `  z
)  e.  t  /\  ( S `  t )  =/=  (/) )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) ) )
7069rexlimdvw 2842 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  ( E. t  e.  J  (
( F `  z
)  e.  t  /\  ( S `  t )  =/=  (/) )  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) ) )
7116, 70mpd 15 . . . 4  |-  ( ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  /\  z  e.  A
)  ->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) )
7271ralrimiva 2797 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  A. z  e.  A  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) )
73 eleq1 2501 . . . . . . 7  |-  ( x  =  ( F `  z )  ->  (
x  e.  y  <->  ( F `  z )  e.  y ) )
7473anbi1d 699 . . . . . 6  |-  ( x  =  ( F `  z )  ->  (
( x  e.  y  /\  y  C_  ( F " A ) )  <-> 
( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
7574rexbidv 2734 . . . . 5  |-  ( x  =  ( F `  z )  ->  ( E. y  e.  J  ( x  e.  y  /\  y  C_  ( F
" A ) )  <->  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
7675ralima 5954 . . . 4  |-  ( ( F  Fn  B  /\  A  C_  B )  -> 
( A. x  e.  ( F " A
) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) )  <->  A. z  e.  A  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A ) ) ) )
7749, 11, 76syl2anc 656 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  ( A. x  e.  ( F " A ) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) )  <->  A. z  e.  A  E. y  e.  J  ( ( F `  z )  e.  y  /\  y  C_  ( F " A
) ) ) )
7872, 77mpbird 232 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  A. x  e.  ( F " A
) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) ) )
79 eltop2 18480 . . 3  |-  ( J  e.  Top  ->  (
( F " A
)  e.  J  <->  A. x  e.  ( F " A
) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) ) ) )
8040, 79syl 16 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  (
( F " A
)  e.  J  <->  A. x  e.  ( F " A
) E. y  e.  J  ( x  e.  y  /\  y  C_  ( F " A ) ) ) )
8178, 80mpbird 232 1  |-  ( ( F  e.  ( C CovMap  J )  /\  A  e.  C )  ->  ( F " A )  e.  J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717    \ cdif 3322    i^i cin 3324    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   {csn 3874   U.cuni 4088    e. cmpt 4347   `'ccnv 4835    |` cres 4838   "cima 4839    Fn wfn 5410   -->wf 5411   ` cfv 5415   iota_crio 6048  (class class class)co 6090   ↾t crest 14355   Topctop 18398    Cn ccn 18728   Homeochmeo 19226   CovMap ccvm 27058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-fin 7310  df-fi 7657  df-rest 14357  df-topgen 14378  df-top 18403  df-bases 18405  df-topon 18406  df-cn 18731  df-hmeo 19228  df-cvm 27059
This theorem is referenced by:  cvmopn  27083
  Copyright terms: Public domain W3C validator