Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftphtlem Unicode version

Theorem cvmliftphtlem 24957
Description: Lemma for cvmliftpht 24958. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b  |-  B  = 
U. C
cvmliftpht.m  |-  M  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
cvmliftpht.n  |-  N  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
cvmliftpht.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftpht.p  |-  ( ph  ->  P  e.  B )
cvmliftpht.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftphtlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftphtlem.h  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
cvmliftphtlem.k  |-  ( ph  ->  K  e.  ( G ( PHtpy `  J ) H ) )
cvmliftphtlem.a  |-  ( ph  ->  A  e.  ( ( II  tX  II )  Cn  C ) )
cvmliftphtlem.c  |-  ( ph  ->  ( F  o.  A
)  =  K )
cvmliftphtlem.0  |-  ( ph  ->  ( 0 A 0 )  =  P )
Assertion
Ref Expression
cvmliftphtlem  |-  ( ph  ->  A  e.  ( M ( PHtpy `  C ) N ) )
Distinct variable groups:    A, f    B, f    f, F    f, J    C, f    f, G   
f, H    P, f
Allowed substitution hints:    ph( f)    K( f)    M( f)    N( f)

Proof of Theorem cvmliftphtlem
Dummy variables  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4  |-  B  = 
U. C
2 cvmliftpht.m . . . 4  |-  M  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
3 cvmliftpht.f . . . 4  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmliftphtlem.g . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
5 cvmliftpht.p . . . 4  |-  ( ph  ->  P  e.  B )
6 cvmliftpht.e . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
71, 2, 3, 4, 5, 6cvmliftiota 24941 . . 3  |-  ( ph  ->  ( M  e.  ( II  Cn  C )  /\  ( F  o.  M )  =  G  /\  ( M ` 
0 )  =  P ) )
87simp1d 969 . 2  |-  ( ph  ->  M  e.  ( II 
Cn  C ) )
9 cvmliftpht.n . . . 4  |-  N  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
10 cvmliftphtlem.h . . . 4  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
11 cvmliftphtlem.k . . . . . . 7  |-  ( ph  ->  K  e.  ( G ( PHtpy `  J ) H ) )
124, 10, 11phtpy01 18963 . . . . . 6  |-  ( ph  ->  ( ( G ` 
0 )  =  ( H `  0 )  /\  ( G ` 
1 )  =  ( H `  1 ) ) )
1312simpld 446 . . . . 5  |-  ( ph  ->  ( G `  0
)  =  ( H `
 0 ) )
146, 13eqtrd 2436 . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( H `
 0 ) )
151, 9, 3, 10, 5, 14cvmliftiota 24941 . . 3  |-  ( ph  ->  ( N  e.  ( II  Cn  C )  /\  ( F  o.  N )  =  H  /\  ( N ` 
0 )  =  P ) )
1615simp1d 969 . 2  |-  ( ph  ->  N  e.  ( II 
Cn  C ) )
17 cvmliftphtlem.a . 2  |-  ( ph  ->  A  e.  ( ( II  tX  II )  Cn  C ) )
18 iitop 18863 . . . . . . . . . . . . . . . 16  |-  II  e.  Top
19 iiuni 18864 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  = 
U. II
2018, 18, 19, 19txunii 17578 . . . . . . . . . . . . . . 15  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
2120, 1cnf 17264 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ( II 
tX  II )  Cn  C )  ->  A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
2217, 21syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
23 0elunit 10971 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 [,] 1
)
24 opelxpi 4869 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  <. s ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
2523, 24mpan2 653 . . . . . . . . . . . . 13  |-  ( s  e.  ( 0 [,] 1 )  ->  <. s ,  0 >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
26 fvco3 5759 . . . . . . . . . . . . 13  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. s ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. s ,  0 >. )  =  ( F `  ( A `  <. s ,  0 >. )
) )
2722, 25, 26syl2an 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  0 >. )  =  ( F `  ( A `
 <. s ,  0
>. ) ) )
28 cvmliftphtlem.c . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  o.  A
)  =  K )
2928adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F  o.  A )  =  K )
3029fveq1d 5689 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  0 >. )  =  ( K `  <. s ,  0 >. )
)
3127, 30eqtr3d 2438 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. s ,  0
>. ) )  =  ( K `  <. s ,  0 >. )
)
32 df-ov 6043 . . . . . . . . . . . 12  |-  ( s A 0 )  =  ( A `  <. s ,  0 >. )
3332fveq2i 5690 . . . . . . . . . . 11  |-  ( F `
 ( s A 0 ) )  =  ( F `  ( A `  <. s ,  0 >. ) )
34 df-ov 6043 . . . . . . . . . . 11  |-  ( s K 0 )  =  ( K `  <. s ,  0 >. )
3531, 33, 343eqtr4g 2461 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 0 ) )  =  ( s K 0 ) )
36 iitopon 18862 . . . . . . . . . . . . 13  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3736a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
384, 10phtpyhtpy 18960 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G ( PHtpy `  J ) H ) 
C_  ( G ( II Htpy  J ) H ) )
3938, 11sseldd 3309 . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  ( G ( II Htpy  J ) H ) )
4037, 4, 10, 39htpyi 18952 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s K 0 )  =  ( G `
 s )  /\  ( s K 1 )  =  ( H `
 s ) ) )
4140simpld 446 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s K 0 )  =  ( G `  s ) )
4235, 41eqtrd 2436 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 0 ) )  =  ( G `  s ) )
4342mpteq2dva 4255 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
s A 0 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( G `  s ) ) )
44 fovrn 6175 . . . . . . . . . . 11  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s A 0 )  e.  B )
4523, 44mp3an3 1268 . . . . . . . . . 10  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( s A 0 )  e.  B )
4622, 45sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 0 )  e.  B )
47 eqidd 2405 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )
48 cvmcn 24902 . . . . . . . . . . . 12  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
493, 48syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( C  Cn  J ) )
50 eqid 2404 . . . . . . . . . . . 12  |-  U. J  =  U. J
511, 50cnf 17264 . . . . . . . . . . 11  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
5249, 51syl 16 . . . . . . . . . 10  |-  ( ph  ->  F : B --> U. J
)
5352feqmptd 5738 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  B  |->  ( F `
 x ) ) )
54 fveq2 5687 . . . . . . . . 9  |-  ( x  =  ( s A 0 )  ->  ( F `  x )  =  ( F `  ( s A 0 ) ) )
5546, 47, 53, 54fmptco 5860 . . . . . . . 8  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( s A 0 ) ) ) )
5619, 50cnf 17264 . . . . . . . . . 10  |-  ( G  e.  ( II  Cn  J )  ->  G : ( 0 [,] 1 ) --> U. J
)
574, 56syl 16 . . . . . . . . 9  |-  ( ph  ->  G : ( 0 [,] 1 ) --> U. J )
5857feqmptd 5738 . . . . . . . 8  |-  ( ph  ->  G  =  ( s  e.  ( 0 [,] 1 )  |->  ( G `
 s ) ) )
5943, 55, 583eqtr4d 2446 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )  =  G )
60 cvmliftphtlem.0 . . . . . . 7  |-  ( ph  ->  ( 0 A 0 )  =  P )
6137cnmptid 17646 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  s )  e.  ( II  Cn  II ) )
6223a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ( 0 [,] 1 ) )
6337, 37, 62cnmptc 17647 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( II  Cn  II ) )
6437, 61, 63, 17cnmpt12f 17651 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  e.  ( II  Cn  C ) )
651cvmlift 24939 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  G  e.  ( II  Cn  J ) )  /\  ( P  e.  B  /\  ( F `  P
)  =  ( G `
 0 ) ) )  ->  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P ) )
663, 4, 5, 6, 65syl22anc 1185 . . . . . . . 8  |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
67 coeq2 4990 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( F  o.  f
)  =  ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) ) )
6867eqeq1d 2412 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( ( F  o.  f )  =  G  <-> 
( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )  =  G ) )
69 fveq1 5686 . . . . . . . . . . . 12  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( f `  0
)  =  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) `  0 ) )
70 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( s  =  0  ->  (
s A 0 )  =  ( 0 A 0 ) )
71 eqid 2404 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )
72 ovex 6065 . . . . . . . . . . . . . 14  |-  ( 0 A 0 )  e. 
_V
7370, 71, 72fvmpt 5765 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) ) `  0
)  =  ( 0 A 0 ) )
7423, 73ax-mp 8 . . . . . . . . . . . 12  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) `  0 )  =  ( 0 A 0 )
7569, 74syl6eq 2452 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( f `  0
)  =  ( 0 A 0 ) )
7675eqeq1d 2412 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( ( f ` 
0 )  =  P  <-> 
( 0 A 0 )  =  P ) )
7768, 76anbi12d 692 . . . . . . . . 9  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P )  <->  ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) )  =  G  /\  (
0 A 0 )  =  P ) ) )
7877riota2 6531 . . . . . . . 8  |-  ( ( ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  e.  ( II  Cn  C )  /\  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P ) )  -> 
( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) )  =  G  /\  (
0 A 0 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) ) ) )
7964, 66, 78syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) )  =  G  /\  (
0 A 0 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) ) ) )
8059, 60, 79mpbi2and 888 . . . . . 6  |-  ( ph  ->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )
812, 80syl5eq 2448 . . . . 5  |-  ( ph  ->  M  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )
8219, 1cnf 17264 . . . . . . 7  |-  ( M  e.  ( II  Cn  C )  ->  M : ( 0 [,] 1 ) --> B )
838, 82syl 16 . . . . . 6  |-  ( ph  ->  M : ( 0 [,] 1 ) --> B )
8483feqmptd 5738 . . . . 5  |-  ( ph  ->  M  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 s ) ) )
8581, 84eqtr3d 2438 . . . 4  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  s ) ) )
86 mpteqb 5778 . . . . 5  |-  ( A. s  e.  ( 0 [,] 1 ) ( s A 0 )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  s ) )  <->  A. s  e.  ( 0 [,] 1 ) ( s A 0 )  =  ( M `
 s ) ) )
87 ovex 6065 . . . . . 6  |-  ( s A 0 )  e. 
_V
8887a1i 11 . . . . 5  |-  ( s  e.  ( 0 [,] 1 )  ->  (
s A 0 )  e.  _V )
8986, 88mprg 2735 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 s ) )  <->  A. s  e.  (
0 [,] 1 ) ( s A 0 )  =  ( M `
 s ) )
9085, 89sylib 189 . . 3  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( s A 0 )  =  ( M `
 s ) )
9190r19.21bi 2764 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 0 )  =  ( M `  s ) )
92 1elunit 10972 . . . . . . . . . . . . . 14  |-  1  e.  ( 0 [,] 1
)
93 opelxpi 4869 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  <. s ,  1
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
9492, 93mpan2 653 . . . . . . . . . . . . 13  |-  ( s  e.  ( 0 [,] 1 )  ->  <. s ,  1 >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
95 fvco3 5759 . . . . . . . . . . . . 13  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. s ,  1
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. s ,  1 >. )  =  ( F `  ( A `  <. s ,  1 >. )
) )
9622, 94, 95syl2an 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  1 >. )  =  ( F `  ( A `
 <. s ,  1
>. ) ) )
9729fveq1d 5689 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  1 >. )  =  ( K `  <. s ,  1 >. )
)
9896, 97eqtr3d 2438 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. s ,  1
>. ) )  =  ( K `  <. s ,  1 >. )
)
99 df-ov 6043 . . . . . . . . . . . 12  |-  ( s A 1 )  =  ( A `  <. s ,  1 >. )
10099fveq2i 5690 . . . . . . . . . . 11  |-  ( F `
 ( s A 1 ) )  =  ( F `  ( A `  <. s ,  1 >. ) )
101 df-ov 6043 . . . . . . . . . . 11  |-  ( s K 1 )  =  ( K `  <. s ,  1 >. )
10298, 100, 1013eqtr4g 2461 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 1 ) )  =  ( s K 1 ) )
10340simprd 450 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s K 1 )  =  ( H `  s ) )
104102, 103eqtrd 2436 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 1 ) )  =  ( H `  s ) )
105104mpteq2dva 4255 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
s A 1 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( H `  s ) ) )
106 fovrn 6175 . . . . . . . . . . 11  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s A 1 )  e.  B )
10792, 106mp3an3 1268 . . . . . . . . . 10  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( s A 1 )  e.  B )
10822, 107sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 1 )  e.  B )
109 eqidd 2405 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )
110 fveq2 5687 . . . . . . . . 9  |-  ( x  =  ( s A 1 )  ->  ( F `  x )  =  ( F `  ( s A 1 ) ) )
111108, 109, 53, 110fmptco 5860 . . . . . . . 8  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( s A 1 ) ) ) )
11219, 50cnf 17264 . . . . . . . . . 10  |-  ( H  e.  ( II  Cn  J )  ->  H : ( 0 [,] 1 ) --> U. J
)
11310, 112syl 16 . . . . . . . . 9  |-  ( ph  ->  H : ( 0 [,] 1 ) --> U. J )
114113feqmptd 5738 . . . . . . . 8  |-  ( ph  ->  H  =  ( s  e.  ( 0 [,] 1 )  |->  ( H `
 s ) ) )
115105, 111, 1143eqtr4d 2446 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )  =  H )
116 iicon 18870 . . . . . . . . . . . . 13  |-  II  e.  Con
117116a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  II  e.  Con )
118 iinllycon 24894 . . . . . . . . . . . . 13  |-  II  e. 𝑛Locally  Con
119118a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  II  e. 𝑛Locally  Con )
12037, 63, 61, 17cnmpt12f 17651 . . . . . . . . . . . 12  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  e.  ( II  Cn  C ) )
121 cvmtop1 24900 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
1223, 121syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  Top )
1231toptopon 16953 . . . . . . . . . . . . . 14  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
124122, 123sylib 189 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  (TopOn `  B ) )
125 ffvelrn 5827 . . . . . . . . . . . . . 14  |-  ( ( M : ( 0 [,] 1 ) --> B  /\  0  e.  ( 0 [,] 1 ) )  ->  ( M `  0 )  e.  B )
12683, 23, 125sylancl 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M `  0
)  e.  B )
127 cnconst2 17301 . . . . . . . . . . . . 13  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  C  e.  (TopOn `  B )  /\  ( M `  0
)  e.  B )  ->  ( ( 0 [,] 1 )  X. 
{ ( M ` 
0 ) } )  e.  ( II  Cn  C ) )
12837, 124, 126, 127syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( M `  0
) } )  e.  ( II  Cn  C
) )
1294, 10, 11phtpyi 18962 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 K s )  =  ( G `
 0 )  /\  ( 1 K s )  =  ( G `
 1 ) ) )
130129simpld 446 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 K s )  =  ( G ` 
0 ) )
131 opelxpi 4869 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 0 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
13223, 131mpan 652 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  ( 0 [,] 1 )  ->  <. 0 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
133 fvco3 5759 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. 0 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. 0 ,  s >. )  =  ( F `  ( A `  <. 0 ,  s >. )
) )
13422, 132, 133syl2an 464 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 0 ,  s >. )  =  ( F `  ( A `
 <. 0 ,  s
>. ) ) )
13529fveq1d 5689 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 0 ,  s >. )  =  ( K `  <. 0 ,  s >. )
)
136134, 135eqtr3d 2438 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. 0 ,  s
>. ) )  =  ( K `  <. 0 ,  s >. )
)
137 df-ov 6043 . . . . . . . . . . . . . . . . . 18  |-  ( 0 A s )  =  ( A `  <. 0 ,  s >. )
138137fveq2i 5690 . . . . . . . . . . . . . . . . 17  |-  ( F `
 ( 0 A s ) )  =  ( F `  ( A `  <. 0 ,  s >. ) )
139 df-ov 6043 . . . . . . . . . . . . . . . . 17  |-  ( 0 K s )  =  ( K `  <. 0 ,  s >. )
140136, 138, 1393eqtr4g 2461 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 0 A s ) )  =  ( 0 K s ) )
1417simp3d 971 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M `  0
)  =  P )
142141adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( M `  0 )  =  P )
143142fveq2d 5691 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( M `  0 ) )  =  ( F `  P ) )
1446adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  P )  =  ( G ` 
0 ) )
145143, 144eqtrd 2436 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( M `  0 ) )  =  ( G ` 
0 ) )
146130, 140, 1453eqtr4d 2446 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 0 A s ) )  =  ( F `  ( M `  0 ) ) )
147146mpteq2dva 4255 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
0 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( M `
 0 ) ) ) )
148 fconstmpt 4880 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 )  X.  { ( F `
 ( M ` 
0 ) ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `
 ( M ` 
0 ) ) )
149147, 148syl6eqr 2454 . . . . . . . . . . . . 13  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
0 A s ) ) )  =  ( ( 0 [,] 1
)  X.  { ( F `  ( M `
 0 ) ) } ) )
150 fovrn 6175 . . . . . . . . . . . . . . . 16  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 A s )  e.  B )
15123, 150mp3an2 1267 . . . . . . . . . . . . . . 15  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 A s )  e.  B )
15222, 151sylan 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 A s )  e.  B )
153 eqidd 2405 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) )
154 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( x  =  ( 0 A s )  ->  ( F `  x )  =  ( F `  ( 0 A s ) ) )
155152, 153, 53, 154fmptco 5860 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( 0 A s ) ) ) )
156 ffn 5550 . . . . . . . . . . . . . . 15  |-  ( F : B --> U. J  ->  F  Fn  B )
15752, 156syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  Fn  B )
158 fcoconst 5864 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  B  /\  ( M `  0 )  e.  B )  -> 
( F  o.  (
( 0 [,] 1
)  X.  { ( M `  0 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  0 )
) } ) )
159157, 126, 158syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { ( M `  0 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  0 )
) } ) )
160149, 155, 1593eqtr4d 2446 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) )  =  ( F  o.  ( ( 0 [,] 1 )  X.  { ( M `
 0 ) } ) ) )
16160, 141eqtr4d 2439 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0 A 0 )  =  ( M `
 0 ) )
162 oveq2 6048 . . . . . . . . . . . . . . 15  |-  ( s  =  0  ->  (
0 A s )  =  ( 0 A 0 ) )
163 eqid 2404 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( 0 A s ) )
164162, 163, 72fvmpt 5765 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) ) `  0
)  =  ( 0 A 0 ) )
16523, 164ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) `  0 )  =  ( 0 A 0 )
166 fvex 5701 . . . . . . . . . . . . . . 15  |-  ( M `
 0 )  e. 
_V
167166fvconst2 5906 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( M `  0
) } ) ` 
0 )  =  ( M `  0 ) )
16823, 167ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( ( 0 [,] 1
)  X.  { ( M `  0 ) } ) `  0
)  =  ( M `
 0 )
169161, 165, 1683eqtr4g 2461 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( s  e.  ( 0 [,] 1
)  |->  ( 0 A s ) ) ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  {
( M `  0
) } ) ` 
0 ) )
1701, 19, 3, 117, 119, 62, 120, 128, 160, 169cvmliftmoi 24923 . . . . . . . . . . 11  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( ( 0 [,] 1
)  X.  { ( M `  0 ) } ) )
171 fconstmpt 4880 . . . . . . . . . . 11  |-  ( ( 0 [,] 1 )  X.  { ( M `
 0 ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 0 ) )
172170, 171syl6eq 2452 . . . . . . . . . 10  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  0 ) ) )
173 mpteqb 5778 . . . . . . . . . . 11  |-  ( A. s  e.  ( 0 [,] 1 ) ( 0 A s )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  0 ) )  <->  A. s  e.  ( 0 [,] 1 ) ( 0 A s )  =  ( M `
 0 ) ) )
174 ovex 6065 . . . . . . . . . . . 12  |-  ( 0 A s )  e. 
_V
175174a1i 11 . . . . . . . . . . 11  |-  ( s  e.  ( 0 [,] 1 )  ->  (
0 A s )  e.  _V )
176173, 175mprg 2735 . . . . . . . . . 10  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 0 ) )  <->  A. s  e.  (
0 [,] 1 ) ( 0 A s )  =  ( M `
 0 ) )
177172, 176sylib 189 . . . . . . . . 9  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( 0 A s )  =  ( M `
 0 ) )
178 oveq2 6048 . . . . . . . . . . 11  |-  ( s  =  1  ->  (
0 A s )  =  ( 0 A 1 ) )
179178eqeq1d 2412 . . . . . . . . . 10  |-  ( s  =  1  ->  (
( 0 A s )  =  ( M `
 0 )  <->  ( 0 A 1 )  =  ( M `  0
) ) )
180179rspcv 3008 . . . . . . . . 9  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( A. s  e.  (
0 [,] 1 ) ( 0 A s )  =  ( M `
 0 )  -> 
( 0 A 1 )  =  ( M `
 0 ) ) )
18192, 177, 180mpsyl 61 . . . . . . . 8  |-  ( ph  ->  ( 0 A 1 )  =  ( M `
 0 ) )
182181, 141eqtrd 2436 . . . . . . 7  |-  ( ph  ->  ( 0 A 1 )  =  P )
18392a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ( 0 [,] 1 ) )
18437, 37, 183cnmptc 17647 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  1 )  e.  ( II  Cn  II ) )
18537, 61, 184, 17cnmpt12f 17651 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  e.  ( II  Cn  C ) )
1861cvmlift 24939 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  H  e.  ( II  Cn  J ) )  /\  ( P  e.  B  /\  ( F `  P
)  =  ( H `
 0 ) ) )  ->  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  H  /\  ( f `
 0 )  =  P ) )
1873, 10, 5, 14, 186syl22anc 1185 . . . . . . . 8  |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
188 coeq2 4990 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( F  o.  f
)  =  ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) ) )
189188eqeq1d 2412 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( ( F  o.  f )  =  H  <-> 
( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )  =  H ) )
190 fveq1 5686 . . . . . . . . . . . 12  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( f `  0
)  =  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) `  0 ) )
191 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( s  =  0  ->  (
s A 1 )  =  ( 0 A 1 ) )
192 eqid 2404 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )
193 ovex 6065 . . . . . . . . . . . . . 14  |-  ( 0 A 1 )  e. 
_V
194191, 192, 193fvmpt 5765 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) ) `  0
)  =  ( 0 A 1 ) )
19523, 194ax-mp 8 . . . . . . . . . . . 12  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) `  0 )  =  ( 0 A 1 )
196190, 195syl6eq 2452 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( f `  0
)  =  ( 0 A 1 ) )
197196eqeq1d 2412 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( ( f ` 
0 )  =  P  <-> 
( 0 A 1 )  =  P ) )
198189, 197anbi12d 692 . . . . . . . . 9  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( ( ( F  o.  f )  =  H  /\  ( f `
 0 )  =  P )  <->  ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) )  =  H  /\  (
0 A 1 )  =  P ) ) )
199198riota2 6531 . . . . . . . 8  |-  ( ( ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  e.  ( II  Cn  C )  /\  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  H  /\  ( f `
 0 )  =  P ) )  -> 
( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) )  =  H  /\  (
0 A 1 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) ) ) )
200185, 187, 199syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) )  =  H  /\  (
0 A 1 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) ) ) )
201115, 182, 200mpbi2and 888 . . . . . 6  |-  ( ph  ->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )
2029, 201syl5eq 2448 . . . . 5  |-  ( ph  ->  N  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )
20319, 1cnf 17264 . . . . . . 7  |-  ( N  e.  ( II  Cn  C )  ->  N : ( 0 [,] 1 ) --> B )
20416, 203syl 16 . . . . . 6  |-  ( ph  ->  N : ( 0 [,] 1 ) --> B )
205204feqmptd 5738 . . . . 5  |-  ( ph  ->  N  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `
 s ) ) )
206202, 205eqtr3d 2438 . . . 4  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `  s ) ) )
207 mpteqb 5778 . . . . 5  |-  ( A. s  e.  ( 0 [,] 1 ) ( s A 1 )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `  s ) )  <->  A. s  e.  ( 0 [,] 1 ) ( s A 1 )  =  ( N `
 s ) ) )
208 ovex 6065 . . . . . 6  |-  ( s A 1 )  e. 
_V
209208a1i 11 . . . . 5  |-  ( s  e.  ( 0 [,] 1 )  ->  (
s A 1 )  e.  _V )
210207, 209mprg 2735 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `
 s ) )  <->  A. s  e.  (
0 [,] 1 ) ( s A 1 )  =  ( N `
 s ) )
211206, 210sylib 189 . . 3  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( s A 1 )  =  ( N `
 s ) )
212211r19.21bi 2764 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 1 )  =  ( N `  s ) )
213177r19.21bi 2764 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 A s )  =  ( M ` 
0 ) )
21437, 184, 61, 17cnmpt12f 17651 . . . . . 6  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  e.  ( II  Cn  C ) )
215 ffvelrn 5827 . . . . . . . 8  |-  ( ( M : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1 ) )  ->  ( M `  1 )  e.  B )
21683, 92, 215sylancl 644 . . . . . . 7  |-  ( ph  ->  ( M `  1
)  e.  B )
217 cnconst2 17301 . . . . . . 7  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  C  e.  (TopOn `  B )  /\  ( M `  1
)  e.  B )  ->  ( ( 0 [,] 1 )  X. 
{ ( M ` 
1 ) } )  e.  ( II  Cn  C ) )
21837, 124, 216, 217syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( M `  1
) } )  e.  ( II  Cn  C
) )
219 opelxpi 4869 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 1 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
22092, 219mpan 652 . . . . . . . . . . . . 13  |-  ( s  e.  ( 0 [,] 1 )  ->  <. 1 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
221 fvco3 5759 . . . . . . . . . . . . 13  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. 1 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. 1 ,  s >. )  =  ( F `  ( A `  <. 1 ,  s >. )
) )
22222, 220, 221syl2an 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 1 ,  s >. )  =  ( F `  ( A `
 <. 1 ,  s
>. ) ) )
22329fveq1d 5689 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 1 ,  s >. )  =  ( K `  <. 1 ,  s >. )
)
224222, 223eqtr3d 2438 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. 1 ,  s
>. ) )  =  ( K `  <. 1 ,  s >. )
)
225 df-ov 6043 . . . . . . . . . . . 12  |-  ( 1 A s )  =  ( A `  <. 1 ,  s >. )
226225fveq2i 5690 . . . . . . . . . . 11  |-  ( F `
 ( 1 A s ) )  =  ( F `  ( A `  <. 1 ,  s >. ) )
227 df-ov 6043 . . . . . . . . . . 11  |-  ( 1 K s )  =  ( K `  <. 1 ,  s >. )
228224, 226, 2273eqtr4g 2461 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 1 A s ) )  =  ( 1 K s ) )
229129simprd 450 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 K s )  =  ( G ` 
1 ) )
2307simp2d 970 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  o.  M
)  =  G )
231230adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F  o.  M )  =  G )
232231fveq1d 5689 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  M
) `  1 )  =  ( G ` 
1 ) )
23383adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  M : ( 0 [,] 1 ) --> B )
234 fvco3 5759 . . . . . . . . . . . 12  |-  ( ( M : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  M ) `  1 )  =  ( F `  ( M `  1 )
) )
235233, 92, 234sylancl 644 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  M
) `  1 )  =  ( F `  ( M `  1 ) ) )
236232, 235eqtr3d 2438 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  1 )  =  ( F `  ( M `  1 ) ) )
237228, 229, 2363eqtrd 2440 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 1 A s ) )  =  ( F `  ( M `  1 ) ) )
238237mpteq2dva 4255 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( M `
 1 ) ) ) )
239 fconstmpt 4880 . . . . . . . 8  |-  ( ( 0 [,] 1 )  X.  { ( F `
 ( M ` 
1 ) ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `
 ( M ` 
1 ) ) )
240238, 239syl6eqr 2454 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1 A s ) ) )  =  ( ( 0 [,] 1
)  X.  { ( F `  ( M `
 1 ) ) } ) )
241 fovrn 6175 . . . . . . . . . 10  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 A s )  e.  B )
24292, 241mp3an2 1267 . . . . . . . . 9  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 A s )  e.  B )
24322, 242sylan 458 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 A s )  e.  B )
244 eqidd 2405 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) )
245 fveq2 5687 . . . . . . . 8  |-  ( x  =  ( 1 A s )  ->  ( F `  x )  =  ( F `  ( 1 A s ) ) )
246243, 244, 53, 245fmptco 5860 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( 1 A s ) ) ) )
247 fcoconst 5864 . . . . . . . 8  |-  ( ( F  Fn  B  /\  ( M `  1 )  e.  B )  -> 
( F  o.  (
( 0 [,] 1
)  X.  { ( M `  1 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  1 )
) } ) )
248157, 216, 247syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { ( M `  1 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  1 )
) } ) )
249240, 246, 2483eqtr4d 2446 . . . . . 6  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) )  =  ( F  o.  ( ( 0 [,] 1 )  X.  { ( M `
 1 ) } ) ) )
250 oveq1 6047 . . . . . . . . . 10  |-  ( s  =  1  ->  (
s A 0 )  =  ( 1 A 0 ) )
251 fveq2 5687 . . . . . . . . . 10  |-  ( s  =  1  ->  ( M `  s )  =  ( M ` 
1 ) )
252250, 251eqeq12d 2418 . . . . . . . . 9  |-  ( s  =  1  ->  (
( s A 0 )  =  ( M `
 s )  <->  ( 1 A 0 )  =  ( M `  1
) ) )
253252rspcv 3008 . . . . . . . 8  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( A. s  e.  (
0 [,] 1 ) ( s A 0 )  =  ( M `
 s )  -> 
( 1 A 0 )  =  ( M `
 1 ) ) )
25492, 90, 253mpsyl 61 . . . . . . 7  |-  ( ph  ->  ( 1 A 0 )  =  ( M `
 1 ) )
255 oveq2 6048 . . . . . . . . 9  |-  ( s  =  0  ->  (
1 A s )  =  ( 1 A 0 ) )
256 eqid 2404 . . . . . . . . 9  |-  ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( 1 A s ) )
257 ovex 6065 . . . . . . . . 9  |-  ( 1 A 0 )  e. 
_V
258255, 256, 257fvmpt 5765 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) ) `  0
)  =  ( 1 A 0 ) )
25923, 258ax-mp 8 . . . . . . 7  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) `  0 )  =  ( 1 A 0 )
260 fvex 5701 . . . . . . . . 9  |-  ( M `
 1 )  e. 
_V
261260fvconst2 5906 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( M `  1
) } ) ` 
0 )  =  ( M `  1 ) )
26223, 261ax-mp 8 . . . . . . 7  |-  ( ( ( 0 [,] 1
)  X.  { ( M `  1 ) } ) `  0
)  =  ( M `
 1 )
263254, 259, 2623eqtr4g 2461 . . . . . 6  |-  ( ph  ->  ( ( s  e.  ( 0 [,] 1
)  |->  ( 1 A s ) ) ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  {
( M `  1
) } ) ` 
0 ) )
2641, 19, 3, 117, 119, 62, 214, 218, 249, 263cvmliftmoi 24923 . . . . 5  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( ( 0 [,] 1
)  X.  { ( M `  1 ) } ) )
265 fconstmpt 4880 . . . . 5  |-  ( ( 0 [,] 1 )  X.  { ( M `
 1 ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 1 ) )
266264, 265syl6eq 2452 . . . 4  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  1 ) ) )
267 mpteqb 5778 . . . . 5  |-  ( A. s  e.  ( 0 [,] 1 ) ( 1 A s )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  1 ) )  <->  A. s  e.  ( 0 [,] 1 ) ( 1 A s )  =  ( M `
 1 ) ) )
268 ovex 6065 . . . . . 6  |-  ( 1 A s )  e. 
_V
269268a1i 11 . . . . 5  |-  ( s  e.  ( 0 [,] 1 )  ->  (
1 A s )  e.  _V )
270267, 269mprg 2735 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 1 ) )  <->  A. s  e.  (
0 [,] 1 ) ( 1 A s )  =  ( M `
 1 ) )
271266, 270sylib 189 . . 3  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( 1 A s )  =  ( M `
 1 ) )
272271r19.21bi 2764 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 A s )  =  ( M ` 
1 ) )
2738, 16, 17, 91, 212, 213, 272isphtpy2d 18965 1  |-  ( ph  ->  A  e.  ( M ( PHtpy `  C ) N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E!wreu 2668   _Vcvv 2916   {csn 3774   <.cop 3777   U.cuni 3975    e. cmpt 4226    X. cxp 4835    o. ccom 4841    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   iota_crio 6501   0cc0 8946   1c1 8947   [,]cicc 10875   Topctop 16913  TopOnctopon 16914    Cn ccn 17242   Conccon 17427  𝑛Locally cnlly 17481    tX ctx 17545   IIcii 18858   Htpy chtpy 18945   PHtpycphtpy 18946   CovMap ccvm 24895
This theorem is referenced by:  cvmliftpht  24958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-ec 6866  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-cn 17245  df-cnp 17246  df-cmp 17404  df-con 17428  df-lly 17482  df-nlly 17483  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-ii 18860  df-htpy 18948  df-phtpy 18949  df-phtpc 18970  df-pcon 24861  df-scon 24862  df-cvm 24896
  Copyright terms: Public domain W3C validator