Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftphtlem Structured version   Unicode version

Theorem cvmliftphtlem 29614
Description: Lemma for cvmliftpht 29615. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b  |-  B  = 
U. C
cvmliftpht.m  |-  M  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
cvmliftpht.n  |-  N  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
cvmliftpht.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftpht.p  |-  ( ph  ->  P  e.  B )
cvmliftpht.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftphtlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftphtlem.h  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
cvmliftphtlem.k  |-  ( ph  ->  K  e.  ( G ( PHtpy `  J ) H ) )
cvmliftphtlem.a  |-  ( ph  ->  A  e.  ( ( II  tX  II )  Cn  C ) )
cvmliftphtlem.c  |-  ( ph  ->  ( F  o.  A
)  =  K )
cvmliftphtlem.0  |-  ( ph  ->  ( 0 A 0 )  =  P )
Assertion
Ref Expression
cvmliftphtlem  |-  ( ph  ->  A  e.  ( M ( PHtpy `  C ) N ) )
Distinct variable groups:    A, f    B, f    f, F    f, J    C, f    f, G   
f, H    P, f
Allowed substitution hints:    ph( f)    K( f)    M( f)    N( f)

Proof of Theorem cvmliftphtlem
Dummy variables  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4  |-  B  = 
U. C
2 cvmliftpht.m . . . 4  |-  M  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
3 cvmliftpht.f . . . 4  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmliftphtlem.g . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
5 cvmliftpht.p . . . 4  |-  ( ph  ->  P  e.  B )
6 cvmliftpht.e . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
71, 2, 3, 4, 5, 6cvmliftiota 29598 . . 3  |-  ( ph  ->  ( M  e.  ( II  Cn  C )  /\  ( F  o.  M )  =  G  /\  ( M ` 
0 )  =  P ) )
87simp1d 1009 . 2  |-  ( ph  ->  M  e.  ( II 
Cn  C ) )
9 cvmliftpht.n . . . 4  |-  N  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
10 cvmliftphtlem.h . . . 4  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
11 cvmliftphtlem.k . . . . . . 7  |-  ( ph  ->  K  e.  ( G ( PHtpy `  J ) H ) )
124, 10, 11phtpy01 21777 . . . . . 6  |-  ( ph  ->  ( ( G ` 
0 )  =  ( H `  0 )  /\  ( G ` 
1 )  =  ( H `  1 ) ) )
1312simpld 457 . . . . 5  |-  ( ph  ->  ( G `  0
)  =  ( H `
 0 ) )
146, 13eqtrd 2443 . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( H `
 0 ) )
151, 9, 3, 10, 5, 14cvmliftiota 29598 . . 3  |-  ( ph  ->  ( N  e.  ( II  Cn  C )  /\  ( F  o.  N )  =  H  /\  ( N ` 
0 )  =  P ) )
1615simp1d 1009 . 2  |-  ( ph  ->  N  e.  ( II 
Cn  C ) )
17 cvmliftphtlem.a . 2  |-  ( ph  ->  A  e.  ( ( II  tX  II )  Cn  C ) )
18 iitop 21676 . . . . . . . . . . . . . . . 16  |-  II  e.  Top
19 iiuni 21677 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  = 
U. II
2018, 18, 19, 19txunii 20386 . . . . . . . . . . . . . . 15  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
2120, 1cnf 20040 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ( II 
tX  II )  Cn  C )  ->  A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
2217, 21syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
23 0elunit 11692 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 [,] 1
)
24 opelxpi 4855 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  <. s ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
2523, 24mpan2 669 . . . . . . . . . . . . 13  |-  ( s  e.  ( 0 [,] 1 )  ->  <. s ,  0 >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
26 fvco3 5926 . . . . . . . . . . . . 13  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. s ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. s ,  0 >. )  =  ( F `  ( A `  <. s ,  0 >. )
) )
2722, 25, 26syl2an 475 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  0 >. )  =  ( F `  ( A `
 <. s ,  0
>. ) ) )
28 cvmliftphtlem.c . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  o.  A
)  =  K )
2928adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F  o.  A )  =  K )
3029fveq1d 5851 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  0 >. )  =  ( K `  <. s ,  0 >. )
)
3127, 30eqtr3d 2445 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. s ,  0
>. ) )  =  ( K `  <. s ,  0 >. )
)
32 df-ov 6281 . . . . . . . . . . . 12  |-  ( s A 0 )  =  ( A `  <. s ,  0 >. )
3332fveq2i 5852 . . . . . . . . . . 11  |-  ( F `
 ( s A 0 ) )  =  ( F `  ( A `  <. s ,  0 >. ) )
34 df-ov 6281 . . . . . . . . . . 11  |-  ( s K 0 )  =  ( K `  <. s ,  0 >. )
3531, 33, 343eqtr4g 2468 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 0 ) )  =  ( s K 0 ) )
36 iitopon 21675 . . . . . . . . . . . . 13  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3736a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
384, 10phtpyhtpy 21774 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G ( PHtpy `  J ) H ) 
C_  ( G ( II Htpy  J ) H ) )
3938, 11sseldd 3443 . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  ( G ( II Htpy  J ) H ) )
4037, 4, 10, 39htpyi 21766 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s K 0 )  =  ( G `
 s )  /\  ( s K 1 )  =  ( H `
 s ) ) )
4140simpld 457 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s K 0 )  =  ( G `  s ) )
4235, 41eqtrd 2443 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 0 ) )  =  ( G `  s ) )
4342mpteq2dva 4481 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
s A 0 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( G `  s ) ) )
44 fovrn 6426 . . . . . . . . . . 11  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s A 0 )  e.  B )
4523, 44mp3an3 1315 . . . . . . . . . 10  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( s A 0 )  e.  B )
4622, 45sylan 469 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 0 )  e.  B )
47 eqidd 2403 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )
48 cvmcn 29559 . . . . . . . . . . . 12  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
493, 48syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( C  Cn  J ) )
50 eqid 2402 . . . . . . . . . . . 12  |-  U. J  =  U. J
511, 50cnf 20040 . . . . . . . . . . 11  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
5249, 51syl 17 . . . . . . . . . 10  |-  ( ph  ->  F : B --> U. J
)
5352feqmptd 5902 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  B  |->  ( F `
 x ) ) )
54 fveq2 5849 . . . . . . . . 9  |-  ( x  =  ( s A 0 )  ->  ( F `  x )  =  ( F `  ( s A 0 ) ) )
5546, 47, 53, 54fmptco 6043 . . . . . . . 8  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( s A 0 ) ) ) )
5619, 50cnf 20040 . . . . . . . . . 10  |-  ( G  e.  ( II  Cn  J )  ->  G : ( 0 [,] 1 ) --> U. J
)
574, 56syl 17 . . . . . . . . 9  |-  ( ph  ->  G : ( 0 [,] 1 ) --> U. J )
5857feqmptd 5902 . . . . . . . 8  |-  ( ph  ->  G  =  ( s  e.  ( 0 [,] 1 )  |->  ( G `
 s ) ) )
5943, 55, 583eqtr4d 2453 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )  =  G )
60 cvmliftphtlem.0 . . . . . . 7  |-  ( ph  ->  ( 0 A 0 )  =  P )
6137cnmptid 20454 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  s )  e.  ( II  Cn  II ) )
6223a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ( 0 [,] 1 ) )
6337, 37, 62cnmptc 20455 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( II  Cn  II ) )
6437, 61, 63, 17cnmpt12f 20459 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  e.  ( II  Cn  C ) )
651cvmlift 29596 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  G  e.  ( II  Cn  J ) )  /\  ( P  e.  B  /\  ( F `  P
)  =  ( G `
 0 ) ) )  ->  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P ) )
663, 4, 5, 6, 65syl22anc 1231 . . . . . . . 8  |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
67 coeq2 4982 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( F  o.  f
)  =  ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) ) )
6867eqeq1d 2404 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( ( F  o.  f )  =  G  <-> 
( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )  =  G ) )
69 fveq1 5848 . . . . . . . . . . . 12  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( f `  0
)  =  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) `  0 ) )
70 oveq1 6285 . . . . . . . . . . . . . 14  |-  ( s  =  0  ->  (
s A 0 )  =  ( 0 A 0 ) )
71 eqid 2402 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )
72 ovex 6306 . . . . . . . . . . . . . 14  |-  ( 0 A 0 )  e. 
_V
7370, 71, 72fvmpt 5932 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) ) `  0
)  =  ( 0 A 0 ) )
7423, 73ax-mp 5 . . . . . . . . . . . 12  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) `  0 )  =  ( 0 A 0 )
7569, 74syl6eq 2459 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( f `  0
)  =  ( 0 A 0 ) )
7675eqeq1d 2404 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( ( f ` 
0 )  =  P  <-> 
( 0 A 0 )  =  P ) )
7768, 76anbi12d 709 . . . . . . . . 9  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P )  <->  ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) )  =  G  /\  (
0 A 0 )  =  P ) ) )
7877riota2 6262 . . . . . . . 8  |-  ( ( ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  e.  ( II  Cn  C )  /\  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P ) )  -> 
( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) )  =  G  /\  (
0 A 0 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) ) ) )
7964, 66, 78syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) )  =  G  /\  (
0 A 0 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) ) ) )
8059, 60, 79mpbi2and 922 . . . . . 6  |-  ( ph  ->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )
812, 80syl5eq 2455 . . . . 5  |-  ( ph  ->  M  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )
8219, 1cnf 20040 . . . . . . 7  |-  ( M  e.  ( II  Cn  C )  ->  M : ( 0 [,] 1 ) --> B )
838, 82syl 17 . . . . . 6  |-  ( ph  ->  M : ( 0 [,] 1 ) --> B )
8483feqmptd 5902 . . . . 5  |-  ( ph  ->  M  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 s ) ) )
8581, 84eqtr3d 2445 . . . 4  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  s ) ) )
86 mpteqb 5948 . . . . 5  |-  ( A. s  e.  ( 0 [,] 1 ) ( s A 0 )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  s ) )  <->  A. s  e.  ( 0 [,] 1 ) ( s A 0 )  =  ( M `
 s ) ) )
87 ovex 6306 . . . . . 6  |-  ( s A 0 )  e. 
_V
8887a1i 11 . . . . 5  |-  ( s  e.  ( 0 [,] 1 )  ->  (
s A 0 )  e.  _V )
8986, 88mprg 2767 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 s ) )  <->  A. s  e.  (
0 [,] 1 ) ( s A 0 )  =  ( M `
 s ) )
9085, 89sylib 196 . . 3  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( s A 0 )  =  ( M `
 s ) )
9190r19.21bi 2773 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 0 )  =  ( M `  s ) )
92 1elunit 11693 . . . . . . . . . . . . . 14  |-  1  e.  ( 0 [,] 1
)
93 opelxpi 4855 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  <. s ,  1
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
9492, 93mpan2 669 . . . . . . . . . . . . 13  |-  ( s  e.  ( 0 [,] 1 )  ->  <. s ,  1 >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
95 fvco3 5926 . . . . . . . . . . . . 13  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. s ,  1
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. s ,  1 >. )  =  ( F `  ( A `  <. s ,  1 >. )
) )
9622, 94, 95syl2an 475 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  1 >. )  =  ( F `  ( A `
 <. s ,  1
>. ) ) )
9729fveq1d 5851 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  1 >. )  =  ( K `  <. s ,  1 >. )
)
9896, 97eqtr3d 2445 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. s ,  1
>. ) )  =  ( K `  <. s ,  1 >. )
)
99 df-ov 6281 . . . . . . . . . . . 12  |-  ( s A 1 )  =  ( A `  <. s ,  1 >. )
10099fveq2i 5852 . . . . . . . . . . 11  |-  ( F `
 ( s A 1 ) )  =  ( F `  ( A `  <. s ,  1 >. ) )
101 df-ov 6281 . . . . . . . . . . 11  |-  ( s K 1 )  =  ( K `  <. s ,  1 >. )
10298, 100, 1013eqtr4g 2468 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 1 ) )  =  ( s K 1 ) )
10340simprd 461 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s K 1 )  =  ( H `  s ) )
104102, 103eqtrd 2443 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 1 ) )  =  ( H `  s ) )
105104mpteq2dva 4481 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
s A 1 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( H `  s ) ) )
106 fovrn 6426 . . . . . . . . . . 11  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s A 1 )  e.  B )
10792, 106mp3an3 1315 . . . . . . . . . 10  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( s A 1 )  e.  B )
10822, 107sylan 469 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 1 )  e.  B )
109 eqidd 2403 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )
110 fveq2 5849 . . . . . . . . 9  |-  ( x  =  ( s A 1 )  ->  ( F `  x )  =  ( F `  ( s A 1 ) ) )
111108, 109, 53, 110fmptco 6043 . . . . . . . 8  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( s A 1 ) ) ) )
11219, 50cnf 20040 . . . . . . . . . 10  |-  ( H  e.  ( II  Cn  J )  ->  H : ( 0 [,] 1 ) --> U. J
)
11310, 112syl 17 . . . . . . . . 9  |-  ( ph  ->  H : ( 0 [,] 1 ) --> U. J )
114113feqmptd 5902 . . . . . . . 8  |-  ( ph  ->  H  =  ( s  e.  ( 0 [,] 1 )  |->  ( H `
 s ) ) )
115105, 111, 1143eqtr4d 2453 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )  =  H )
116 iicon 21683 . . . . . . . . . . . . 13  |-  II  e.  Con
117116a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  II  e.  Con )
118 iinllycon 29551 . . . . . . . . . . . . 13  |-  II  e. 𝑛Locally  Con
119118a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  II  e. 𝑛Locally  Con )
12037, 63, 61, 17cnmpt12f 20459 . . . . . . . . . . . 12  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  e.  ( II  Cn  C ) )
121 cvmtop1 29557 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
1223, 121syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  Top )
1231toptopon 19726 . . . . . . . . . . . . . 14  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
124122, 123sylib 196 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  (TopOn `  B ) )
125 ffvelrn 6007 . . . . . . . . . . . . . 14  |-  ( ( M : ( 0 [,] 1 ) --> B  /\  0  e.  ( 0 [,] 1 ) )  ->  ( M `  0 )  e.  B )
12683, 23, 125sylancl 660 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M `  0
)  e.  B )
127 cnconst2 20077 . . . . . . . . . . . . 13  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  C  e.  (TopOn `  B )  /\  ( M `  0
)  e.  B )  ->  ( ( 0 [,] 1 )  X. 
{ ( M ` 
0 ) } )  e.  ( II  Cn  C ) )
12837, 124, 126, 127syl3anc 1230 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( M `  0
) } )  e.  ( II  Cn  C
) )
1294, 10, 11phtpyi 21776 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 K s )  =  ( G `
 0 )  /\  ( 1 K s )  =  ( G `
 1 ) ) )
130129simpld 457 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 K s )  =  ( G ` 
0 ) )
131 opelxpi 4855 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 0 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
13223, 131mpan 668 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  ( 0 [,] 1 )  ->  <. 0 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
133 fvco3 5926 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. 0 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. 0 ,  s >. )  =  ( F `  ( A `  <. 0 ,  s >. )
) )
13422, 132, 133syl2an 475 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 0 ,  s >. )  =  ( F `  ( A `
 <. 0 ,  s
>. ) ) )
13529fveq1d 5851 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 0 ,  s >. )  =  ( K `  <. 0 ,  s >. )
)
136134, 135eqtr3d 2445 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. 0 ,  s
>. ) )  =  ( K `  <. 0 ,  s >. )
)
137 df-ov 6281 . . . . . . . . . . . . . . . . . 18  |-  ( 0 A s )  =  ( A `  <. 0 ,  s >. )
138137fveq2i 5852 . . . . . . . . . . . . . . . . 17  |-  ( F `
 ( 0 A s ) )  =  ( F `  ( A `  <. 0 ,  s >. ) )
139 df-ov 6281 . . . . . . . . . . . . . . . . 17  |-  ( 0 K s )  =  ( K `  <. 0 ,  s >. )
140136, 138, 1393eqtr4g 2468 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 0 A s ) )  =  ( 0 K s ) )
1417simp3d 1011 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M `  0
)  =  P )
142141adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( M `  0 )  =  P )
143142fveq2d 5853 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( M `  0 ) )  =  ( F `  P ) )
1446adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  P )  =  ( G ` 
0 ) )
145143, 144eqtrd 2443 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( M `  0 ) )  =  ( G ` 
0 ) )
146130, 140, 1453eqtr4d 2453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 0 A s ) )  =  ( F `  ( M `  0 ) ) )
147146mpteq2dva 4481 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
0 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( M `
 0 ) ) ) )
148 fconstmpt 4867 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 )  X.  { ( F `
 ( M ` 
0 ) ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `
 ( M ` 
0 ) ) )
149147, 148syl6eqr 2461 . . . . . . . . . . . . 13  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
0 A s ) ) )  =  ( ( 0 [,] 1
)  X.  { ( F `  ( M `
 0 ) ) } ) )
150 fovrn 6426 . . . . . . . . . . . . . . . 16  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 A s )  e.  B )
15123, 150mp3an2 1314 . . . . . . . . . . . . . . 15  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 A s )  e.  B )
15222, 151sylan 469 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 A s )  e.  B )
153 eqidd 2403 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) )
154 fveq2 5849 . . . . . . . . . . . . . 14  |-  ( x  =  ( 0 A s )  ->  ( F `  x )  =  ( F `  ( 0 A s ) ) )
155152, 153, 53, 154fmptco 6043 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( 0 A s ) ) ) )
156 ffn 5714 . . . . . . . . . . . . . . 15  |-  ( F : B --> U. J  ->  F  Fn  B )
15752, 156syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  Fn  B )
158 fcoconst 6047 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  B  /\  ( M `  0 )  e.  B )  -> 
( F  o.  (
( 0 [,] 1
)  X.  { ( M `  0 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  0 )
) } ) )
159157, 126, 158syl2anc 659 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { ( M `  0 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  0 )
) } ) )
160149, 155, 1593eqtr4d 2453 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) )  =  ( F  o.  ( ( 0 [,] 1 )  X.  { ( M `
 0 ) } ) ) )
16160, 141eqtr4d 2446 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0 A 0 )  =  ( M `
 0 ) )
162 oveq2 6286 . . . . . . . . . . . . . . 15  |-  ( s  =  0  ->  (
0 A s )  =  ( 0 A 0 ) )
163 eqid 2402 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( 0 A s ) )
164162, 163, 72fvmpt 5932 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) ) `  0
)  =  ( 0 A 0 ) )
16523, 164ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) `  0 )  =  ( 0 A 0 )
166 fvex 5859 . . . . . . . . . . . . . . 15  |-  ( M `
 0 )  e. 
_V
167166fvconst2 6107 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( M `  0
) } ) ` 
0 )  =  ( M `  0 ) )
16823, 167ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( 0 [,] 1
)  X.  { ( M `  0 ) } ) `  0
)  =  ( M `
 0 )
169161, 165, 1683eqtr4g 2468 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( s  e.  ( 0 [,] 1
)  |->  ( 0 A s ) ) ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  {
( M `  0
) } ) ` 
0 ) )
1701, 19, 3, 117, 119, 62, 120, 128, 160, 169cvmliftmoi 29580 . . . . . . . . . . 11  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( ( 0 [,] 1
)  X.  { ( M `  0 ) } ) )
171 fconstmpt 4867 . . . . . . . . . . 11  |-  ( ( 0 [,] 1 )  X.  { ( M `
 0 ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 0 ) )
172170, 171syl6eq 2459 . . . . . . . . . 10  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  0 ) ) )
173 mpteqb 5948 . . . . . . . . . . 11  |-  ( A. s  e.  ( 0 [,] 1 ) ( 0 A s )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  0 ) )  <->  A. s  e.  ( 0 [,] 1 ) ( 0 A s )  =  ( M `
 0 ) ) )
174 ovex 6306 . . . . . . . . . . . 12  |-  ( 0 A s )  e. 
_V
175174a1i 11 . . . . . . . . . . 11  |-  ( s  e.  ( 0 [,] 1 )  ->  (
0 A s )  e.  _V )
176173, 175mprg 2767 . . . . . . . . . 10  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 0 ) )  <->  A. s  e.  (
0 [,] 1 ) ( 0 A s )  =  ( M `
 0 ) )
177172, 176sylib 196 . . . . . . . . 9  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( 0 A s )  =  ( M `
 0 ) )
178 oveq2 6286 . . . . . . . . . . 11  |-  ( s  =  1  ->  (
0 A s )  =  ( 0 A 1 ) )
179178eqeq1d 2404 . . . . . . . . . 10  |-  ( s  =  1  ->  (
( 0 A s )  =  ( M `
 0 )  <->  ( 0 A 1 )  =  ( M `  0
) ) )
180179rspcv 3156 . . . . . . . . 9  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( A. s  e.  (
0 [,] 1 ) ( 0 A s )  =  ( M `
 0 )  -> 
( 0 A 1 )  =  ( M `
 0 ) ) )
18192, 177, 180mpsyl 62 . . . . . . . 8  |-  ( ph  ->  ( 0 A 1 )  =  ( M `
 0 ) )
182181, 141eqtrd 2443 . . . . . . 7  |-  ( ph  ->  ( 0 A 1 )  =  P )
18392a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ( 0 [,] 1 ) )
18437, 37, 183cnmptc 20455 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  1 )  e.  ( II  Cn  II ) )
18537, 61, 184, 17cnmpt12f 20459 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  e.  ( II  Cn  C ) )
1861cvmlift 29596 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  H  e.  ( II  Cn  J ) )  /\  ( P  e.  B  /\  ( F `  P
)  =  ( H `
 0 ) ) )  ->  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  H  /\  ( f `
 0 )  =  P ) )
1873, 10, 5, 14, 186syl22anc 1231 . . . . . . . 8  |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
188 coeq2 4982 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( F  o.  f
)  =  ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) ) )
189188eqeq1d 2404 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( ( F  o.  f )  =  H  <-> 
( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )  =  H ) )
190 fveq1 5848 . . . . . . . . . . . 12  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( f `  0
)  =  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) `  0 ) )
191 oveq1 6285 . . . . . . . . . . . . . 14  |-  ( s  =  0  ->  (
s A 1 )  =  ( 0 A 1 ) )
192 eqid 2402 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )
193 ovex 6306 . . . . . . . . . . . . . 14  |-  ( 0 A 1 )  e. 
_V
194191, 192, 193fvmpt 5932 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) ) `  0
)  =  ( 0 A 1 ) )
19523, 194ax-mp 5 . . . . . . . . . . . 12  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) `  0 )  =  ( 0 A 1 )
196190, 195syl6eq 2459 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( f `  0
)  =  ( 0 A 1 ) )
197196eqeq1d 2404 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( ( f ` 
0 )  =  P  <-> 
( 0 A 1 )  =  P ) )
198189, 197anbi12d 709 . . . . . . . . 9  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( ( ( F  o.  f )  =  H  /\  ( f `
 0 )  =  P )  <->  ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) )  =  H  /\  (
0 A 1 )  =  P ) ) )
199198riota2 6262 . . . . . . . 8  |-  ( ( ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  e.  ( II  Cn  C )  /\  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  H  /\  ( f `
 0 )  =  P ) )  -> 
( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) )  =  H  /\  (
0 A 1 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) ) ) )
200185, 187, 199syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) )  =  H  /\  (
0 A 1 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) ) ) )
201115, 182, 200mpbi2and 922 . . . . . 6  |-  ( ph  ->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )
2029, 201syl5eq 2455 . . . . 5  |-  ( ph  ->  N  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )
20319, 1cnf 20040 . . . . . . 7  |-  ( N  e.  ( II  Cn  C )  ->  N : ( 0 [,] 1 ) --> B )
20416, 203syl 17 . . . . . 6  |-  ( ph  ->  N : ( 0 [,] 1 ) --> B )
205204feqmptd 5902 . . . . 5  |-  ( ph  ->  N  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `
 s ) ) )
206202, 205eqtr3d 2445 . . . 4  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `  s ) ) )
207 mpteqb 5948 . . . . 5  |-  ( A. s  e.  ( 0 [,] 1 ) ( s A 1 )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `  s ) )  <->  A. s  e.  ( 0 [,] 1 ) ( s A 1 )  =  ( N `
 s ) ) )
208 ovex 6306 . . . . . 6  |-  ( s A 1 )  e. 
_V
209208a1i 11 . . . . 5  |-  ( s  e.  ( 0 [,] 1 )  ->  (
s A 1 )  e.  _V )
210207, 209mprg 2767 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `
 s ) )  <->  A. s  e.  (
0 [,] 1 ) ( s A 1 )  =  ( N `
 s ) )
211206, 210sylib 196 . . 3  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( s A 1 )  =  ( N `
 s ) )
212211r19.21bi 2773 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 1 )  =  ( N `  s ) )
213177r19.21bi 2773 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 A s )  =  ( M ` 
0 ) )
21437, 184, 61, 17cnmpt12f 20459 . . . . . 6  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  e.  ( II  Cn  C ) )
215 ffvelrn 6007 . . . . . . . 8  |-  ( ( M : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1 ) )  ->  ( M `  1 )  e.  B )
21683, 92, 215sylancl 660 . . . . . . 7  |-  ( ph  ->  ( M `  1
)  e.  B )
217 cnconst2 20077 . . . . . . 7  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  C  e.  (TopOn `  B )  /\  ( M `  1
)  e.  B )  ->  ( ( 0 [,] 1 )  X. 
{ ( M ` 
1 ) } )  e.  ( II  Cn  C ) )
21837, 124, 216, 217syl3anc 1230 . . . . . 6  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( M `  1
) } )  e.  ( II  Cn  C
) )
219 opelxpi 4855 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 1 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
22092, 219mpan 668 . . . . . . . . . . . . 13  |-  ( s  e.  ( 0 [,] 1 )  ->  <. 1 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
221 fvco3 5926 . . . . . . . . . . . . 13  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. 1 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. 1 ,  s >. )  =  ( F `  ( A `  <. 1 ,  s >. )
) )
22222, 220, 221syl2an 475 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 1 ,  s >. )  =  ( F `  ( A `
 <. 1 ,  s
>. ) ) )
22329fveq1d 5851 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 1 ,  s >. )  =  ( K `  <. 1 ,  s >. )
)
224222, 223eqtr3d 2445 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. 1 ,  s
>. ) )  =  ( K `  <. 1 ,  s >. )
)
225 df-ov 6281 . . . . . . . . . . . 12  |-  ( 1 A s )  =  ( A `  <. 1 ,  s >. )
226225fveq2i 5852 . . . . . . . . . . 11  |-  ( F `
 ( 1 A s ) )  =  ( F `  ( A `  <. 1 ,  s >. ) )
227 df-ov 6281 . . . . . . . . . . 11  |-  ( 1 K s )  =  ( K `  <. 1 ,  s >. )
228224, 226, 2273eqtr4g 2468 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 1 A s ) )  =  ( 1 K s ) )
229129simprd 461 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 K s )  =  ( G ` 
1 ) )
2307simp2d 1010 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  o.  M
)  =  G )
231230adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F  o.  M )  =  G )
232231fveq1d 5851 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  M
) `  1 )  =  ( G ` 
1 ) )
23383adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  M : ( 0 [,] 1 ) --> B )
234 fvco3 5926 . . . . . . . . . . . 12  |-  ( ( M : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  M ) `  1 )  =  ( F `  ( M `  1 )
) )
235233, 92, 234sylancl 660 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  M
) `  1 )  =  ( F `  ( M `  1 ) ) )
236232, 235eqtr3d 2445 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  1 )  =  ( F `  ( M `  1 ) ) )
237228, 229, 2363eqtrd 2447 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 1 A s ) )  =  ( F `  ( M `  1 ) ) )
238237mpteq2dva 4481 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( M `
 1 ) ) ) )
239 fconstmpt 4867 . . . . . . . 8  |-  ( ( 0 [,] 1 )  X.  { ( F `
 ( M ` 
1 ) ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `
 ( M ` 
1 ) ) )
240238, 239syl6eqr 2461 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1 A s ) ) )  =  ( ( 0 [,] 1
)  X.  { ( F `  ( M `
 1 ) ) } ) )
241 fovrn 6426 . . . . . . . . . 10  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 A s )  e.  B )
24292, 241mp3an2 1314 . . . . . . . . 9  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 A s )  e.  B )
24322, 242sylan 469 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 A s )  e.  B )
244 eqidd 2403 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) )
245 fveq2 5849 . . . . . . . 8  |-  ( x  =  ( 1 A s )  ->  ( F `  x )  =  ( F `  ( 1 A s ) ) )
246243, 244, 53, 245fmptco 6043 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( 1 A s ) ) ) )
247 fcoconst 6047 . . . . . . . 8  |-  ( ( F  Fn  B  /\  ( M `  1 )  e.  B )  -> 
( F  o.  (
( 0 [,] 1
)  X.  { ( M `  1 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  1 )
) } ) )
248157, 216, 247syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { ( M `  1 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  1 )
) } ) )
249240, 246, 2483eqtr4d 2453 . . . . . 6  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) )  =  ( F  o.  ( ( 0 [,] 1 )  X.  { ( M `
 1 ) } ) ) )
250 oveq1 6285 . . . . . . . . . 10  |-  ( s  =  1  ->  (
s A 0 )  =  ( 1 A 0 ) )
251 fveq2 5849 . . . . . . . . . 10  |-  ( s  =  1  ->  ( M `  s )  =  ( M ` 
1 ) )
252250, 251eqeq12d 2424 . . . . . . . . 9  |-  ( s  =  1  ->  (
( s A 0 )  =  ( M `
 s )  <->  ( 1 A 0 )  =  ( M `  1
) ) )
253252rspcv 3156 . . . . . . . 8  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( A. s  e.  (
0 [,] 1 ) ( s A 0 )  =  ( M `
 s )  -> 
( 1 A 0 )  =  ( M `
 1 ) ) )
25492, 90, 253mpsyl 62 . . . . . . 7  |-  ( ph  ->  ( 1 A 0 )  =  ( M `
 1 ) )
255 oveq2 6286 . . . . . . . . 9  |-  ( s  =  0  ->  (
1 A s )  =  ( 1 A 0 ) )
256 eqid 2402 . . . . . . . . 9  |-  ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( 1 A s ) )
257 ovex 6306 . . . . . . . . 9  |-  ( 1 A 0 )  e. 
_V
258255, 256, 257fvmpt 5932 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) ) `  0
)  =  ( 1 A 0 ) )
25923, 258ax-mp 5 . . . . . . 7  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) `  0 )  =  ( 1 A 0 )
260 fvex 5859 . . . . . . . . 9  |-  ( M `
 1 )  e. 
_V
261260fvconst2 6107 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( M `  1
) } ) ` 
0 )  =  ( M `  1 ) )
26223, 261ax-mp 5 . . . . . . 7  |-  ( ( ( 0 [,] 1
)  X.  { ( M `  1 ) } ) `  0
)  =  ( M `
 1 )
263254, 259, 2623eqtr4g 2468 . . . . . 6  |-  ( ph  ->  ( ( s  e.  ( 0 [,] 1
)  |->  ( 1 A s ) ) ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  {
( M `  1
) } ) ` 
0 ) )
2641, 19, 3, 117, 119, 62, 214, 218, 249, 263cvmliftmoi 29580 . . . . 5  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( ( 0 [,] 1
)  X.  { ( M `  1 ) } ) )
265 fconstmpt 4867 . . . . 5  |-  ( ( 0 [,] 1 )  X.  { ( M `
 1 ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 1 ) )
266264, 265syl6eq 2459 . . . 4  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  1 ) ) )
267 mpteqb 5948 . . . . 5  |-  ( A. s  e.  ( 0 [,] 1 ) ( 1 A s )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  1 ) )  <->  A. s  e.  ( 0 [,] 1 ) ( 1 A s )  =  ( M `
 1 ) ) )
268 ovex 6306 . . . . . 6  |-  ( 1 A s )  e. 
_V
269268a1i 11 . . . . 5  |-  ( s  e.  ( 0 [,] 1 )  ->  (
1 A s )  e.  _V )
270267, 269mprg 2767 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 1 ) )  <->  A. s  e.  (
0 [,] 1 ) ( 1 A s )  =  ( M `
 1 ) )
271266, 270sylib 196 . . 3  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( 1 A s )  =  ( M `
 1 ) )
272271r19.21bi 2773 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 A s )  =  ( M ` 
1 ) )
2738, 16, 17, 91, 212, 213, 272isphtpy2d 21779 1  |-  ( ph  ->  A  e.  ( M ( PHtpy `  C ) N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   E!wreu 2756   _Vcvv 3059   {csn 3972   <.cop 3978   U.cuni 4191    |-> cmpt 4453    X. cxp 4821    o. ccom 4827    Fn wfn 5564   -->wf 5565   ` cfv 5569   iota_crio 6239  (class class class)co 6278   0cc0 9522   1c1 9523   [,]cicc 11585   Topctop 19686  TopOnctopon 19687    Cn ccn 20018   Conccon 20204  𝑛Locally cnlly 20258    tX ctx 20353   IIcii 21671   Htpy chtpy 21759   PHtpycphtpy 21760   CovMap ccvm 29552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-er 7348  df-ec 7350  df-map 7459  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ioo 11586  df-ico 11588  df-icc 11589  df-fz 11727  df-fzo 11855  df-fl 11966  df-seq 12152  df-exp 12211  df-hash 12453  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-clim 13460  df-sum 13658  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-hom 14933  df-cco 14934  df-rest 15037  df-topn 15038  df-0g 15056  df-gsum 15057  df-topgen 15058  df-pt 15059  df-prds 15062  df-xrs 15116  df-qtop 15121  df-imas 15122  df-xps 15124  df-mre 15200  df-mrc 15201  df-acs 15203  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-mulg 16384  df-cntz 16679  df-cmn 17124  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-cnfld 18741  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cld 19812  df-ntr 19813  df-cls 19814  df-nei 19892  df-cn 20021  df-cnp 20022  df-cmp 20180  df-con 20205  df-lly 20259  df-nlly 20260  df-tx 20355  df-hmeo 20548  df-xms 21115  df-ms 21116  df-tms 21117  df-ii 21673  df-htpy 21762  df-phtpy 21763  df-phtpc 21784  df-pcon 29518  df-scon 29519  df-cvm 29553
This theorem is referenced by:  cvmliftpht  29615
  Copyright terms: Public domain W3C validator