Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftpht Structured version   Visualization version   Unicode version

Theorem cvmliftpht 30053
Description: If  G and  H are path-homotopic, then their lifts  M and  N are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b  |-  B  = 
U. C
cvmliftpht.m  |-  M  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
cvmliftpht.n  |-  N  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
cvmliftpht.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftpht.p  |-  ( ph  ->  P  e.  B )
cvmliftpht.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftpht.g  |-  ( ph  ->  G (  ~=ph  `  J
) H )
Assertion
Ref Expression
cvmliftpht  |-  ( ph  ->  M (  ~=ph  `  C
) N )
Distinct variable groups:    B, f    f, F    f, J    C, f    f, G    f, H    P, f
Allowed substitution hints:    ph( f)    M( f)    N( f)

Proof of Theorem cvmliftpht
Dummy variables  h  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4  |-  B  = 
U. C
2 cvmliftpht.m . . . 4  |-  M  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
3 cvmliftpht.f . . . 4  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmliftpht.g . . . . . 6  |-  ( ph  ->  G (  ~=ph  `  J
) H )
5 isphtpc 22037 . . . . . 6  |-  ( G (  ~=ph  `  J ) H  <->  ( G  e.  ( II  Cn  J
)  /\  H  e.  ( II  Cn  J
)  /\  ( G
( PHtpy `  J ) H )  =/=  (/) ) )
64, 5sylib 200 . . . . 5  |-  ( ph  ->  ( G  e.  ( II  Cn  J )  /\  H  e.  ( II  Cn  J )  /\  ( G (
PHtpy `  J ) H )  =/=  (/) ) )
76simp1d 1021 . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
8 cvmliftpht.p . . . 4  |-  ( ph  ->  P  e.  B )
9 cvmliftpht.e . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
101, 2, 3, 7, 8, 9cvmliftiota 30036 . . 3  |-  ( ph  ->  ( M  e.  ( II  Cn  C )  /\  ( F  o.  M )  =  G  /\  ( M ` 
0 )  =  P ) )
1110simp1d 1021 . 2  |-  ( ph  ->  M  e.  ( II 
Cn  C ) )
12 cvmliftpht.n . . . 4  |-  N  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
136simp2d 1022 . . . 4  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
14 phtpc01 22039 . . . . . . 7  |-  ( G (  ~=ph  `  J ) H  ->  ( ( G `  0 )  =  ( H ` 
0 )  /\  ( G `  1 )  =  ( H ` 
1 ) ) )
154, 14syl 17 . . . . . 6  |-  ( ph  ->  ( ( G ` 
0 )  =  ( H `  0 )  /\  ( G ` 
1 )  =  ( H `  1 ) ) )
1615simpld 461 . . . . 5  |-  ( ph  ->  ( G `  0
)  =  ( H `
 0 ) )
179, 16eqtrd 2487 . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( H `
 0 ) )
181, 12, 3, 13, 8, 17cvmliftiota 30036 . . 3  |-  ( ph  ->  ( N  e.  ( II  Cn  C )  /\  ( F  o.  N )  =  H  /\  ( N ` 
0 )  =  P ) )
1918simp1d 1021 . 2  |-  ( ph  ->  N  e.  ( II 
Cn  C ) )
206simp3d 1023 . . . 4  |-  ( ph  ->  ( G ( PHtpy `  J ) H )  =/=  (/) )
21 n0 3743 . . . 4  |-  ( ( G ( PHtpy `  J
) H )  =/=  (/) 
<->  E. g  g  e.  ( G ( PHtpy `  J ) H ) )
2220, 21sylib 200 . . 3  |-  ( ph  ->  E. g  g  e.  ( G ( PHtpy `  J ) H ) )
233adantr 467 . . . . . 6  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  F  e.  ( C CovMap  J ) )
247, 13phtpycn 22026 . . . . . . 7  |-  ( ph  ->  ( G ( PHtpy `  J ) H ) 
C_  ( ( II 
tX  II )  Cn  J ) )
2524sselda 3434 . . . . . 6  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  g  e.  ( ( II  tX  II )  Cn  J ) )
268adantr 467 . . . . . 6  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  P  e.  B
)
279adantr 467 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  ( F `  P )  =  ( G `  0 ) )
28 0elunit 11757 . . . . . . . . 9  |-  0  e.  ( 0 [,] 1
)
297adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  G  e.  ( II  Cn  J ) )
3013adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  H  e.  ( II  Cn  J ) )
31 simpr 463 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  g  e.  ( G ( PHtpy `  J
) H ) )
3229, 30, 31phtpyi 22027 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  0  e.  ( 0 [,] 1
) )  ->  (
( 0 g 0 )  =  ( G `
 0 )  /\  ( 1 g 0 )  =  ( G `
 1 ) ) )
3328, 32mpan2 678 . . . . . . . 8  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  ( ( 0 g 0 )  =  ( G `  0
)  /\  ( 1 g 0 )  =  ( G `  1
) ) )
3433simpld 461 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  ( 0 g 0 )  =  ( G `  0 ) )
3527, 34eqtr4d 2490 . . . . . 6  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  ( F `  P )  =  ( 0 g 0 ) )
361, 23, 25, 26, 35cvmlift2 30051 . . . . 5  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  E! h  e.  ( ( II  tX  II )  Cn  C
) ( ( F  o.  h )  =  g  /\  ( 0 h 0 )  =  P ) )
37 reurex 3011 . . . . 5  |-  ( E! h  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  h )  =  g  /\  (
0 h 0 )  =  P )  ->  E. h  e.  (
( II  tX  II )  Cn  C ) ( ( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) )
3836, 37syl 17 . . . 4  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  E. h  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) )
393ad2antrr 733 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  F  e.  ( C CovMap  J ) )
408ad2antrr 733 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  P  e.  B )
419ad2antrr 733 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  ( F `  P )  =  ( G ` 
0 ) )
427ad2antrr 733 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  G  e.  ( II  Cn  J
) )
4313ad2antrr 733 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  H  e.  ( II  Cn  J
) )
44 simplr 763 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  g  e.  ( G ( PHtpy `  J ) H ) )
45 simprl 765 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  h  e.  ( ( II  tX  II )  Cn  C
) )
46 simprrl 775 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  ( F  o.  h )  =  g )
47 simprrr 776 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  (
0 h 0 )  =  P )
481, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47cvmliftphtlem 30052 . . . . 5  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  h  e.  ( M ( PHtpy `  C ) N ) )
49 ne0i 3739 . . . . 5  |-  ( h  e.  ( M (
PHtpy `  C ) N )  ->  ( M
( PHtpy `  C ) N )  =/=  (/) )
5048, 49syl 17 . . . 4  |-  ( ( ( ph  /\  g  e.  ( G ( PHtpy `  J ) H ) )  /\  ( h  e.  ( ( II 
tX  II )  Cn  C )  /\  (
( F  o.  h
)  =  g  /\  ( 0 h 0 )  =  P ) ) )  ->  ( M ( PHtpy `  C
) N )  =/=  (/) )
5138, 50rexlimddv 2885 . . 3  |-  ( (
ph  /\  g  e.  ( G ( PHtpy `  J
) H ) )  ->  ( M (
PHtpy `  C ) N )  =/=  (/) )
5222, 51exlimddv 1783 . 2  |-  ( ph  ->  ( M ( PHtpy `  C ) N )  =/=  (/) )
53 isphtpc 22037 . 2  |-  ( M (  ~=ph  `  C ) N  <->  ( M  e.  ( II  Cn  C
)  /\  N  e.  ( II  Cn  C
)  /\  ( M
( PHtpy `  C ) N )  =/=  (/) ) )
5411, 19, 52, 53syl3anbrc 1193 1  |-  ( ph  ->  M (  ~=ph  `  C
) N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 986    = wceq 1446   E.wex 1665    e. wcel 1889    =/= wne 2624   E.wrex 2740   E!wreu 2741   (/)c0 3733   U.cuni 4201   class class class wbr 4405    o. ccom 4841   ` cfv 5585   iota_crio 6256  (class class class)co 6295   0cc0 9544   1c1 9545   [,]cicc 11645    Cn ccn 20252    tX ctx 20587   IIcii 21919   PHtpycphtpy 22011    ~=ph cphtpc 22012   CovMap ccvm 29990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622  ax-addf 9623  ax-mulf 9624
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-fal 1452  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-iin 4284  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-se 4797  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6920  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-ec 7370  df-map 7479  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7889  df-fi 7930  df-sup 7961  df-inf 7962  df-oi 8030  df-card 8378  df-cda 8603  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-ioo 11646  df-ico 11648  df-icc 11649  df-fz 11792  df-fzo 11923  df-fl 12035  df-seq 12221  df-exp 12280  df-hash 12523  df-cj 13174  df-re 13175  df-im 13176  df-sqrt 13310  df-abs 13311  df-clim 13564  df-sum 13765  df-struct 15135  df-ndx 15136  df-slot 15137  df-base 15138  df-sets 15139  df-ress 15140  df-plusg 15215  df-mulr 15216  df-starv 15217  df-sca 15218  df-vsca 15219  df-ip 15220  df-tset 15221  df-ple 15222  df-ds 15224  df-unif 15225  df-hom 15226  df-cco 15227  df-rest 15333  df-topn 15334  df-0g 15352  df-gsum 15353  df-topgen 15354  df-pt 15355  df-prds 15358  df-xrs 15412  df-qtop 15418  df-imas 15419  df-xps 15422  df-mre 15504  df-mrc 15505  df-acs 15507  df-mgm 16500  df-sgrp 16539  df-mnd 16549  df-submnd 16595  df-mulg 16688  df-cntz 16983  df-cmn 17444  df-psmet 18974  df-xmet 18975  df-met 18976  df-bl 18977  df-mopn 18978  df-cnfld 18983  df-top 19933  df-bases 19934  df-topon 19935  df-topsp 19936  df-cld 20046  df-ntr 20047  df-cls 20048  df-nei 20126  df-cn 20255  df-cnp 20256  df-cmp 20414  df-con 20439  df-lly 20493  df-nlly 20494  df-tx 20589  df-hmeo 20782  df-xms 21347  df-ms 21348  df-tms 21349  df-ii 21921  df-htpy 22013  df-phtpy 22014  df-phtpc 22035  df-pcon 29956  df-scon 29957  df-cvm 29991
This theorem is referenced by:  cvmlift3lem1  30054
  Copyright terms: Public domain W3C validator