Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem9 Structured version   Visualization version   Unicode version

Theorem cvmliftlem9 30088
Description: Lemma for cvmlift 30094. The  Q ( M ) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the  Q functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
Assertion
Ref Expression
cvmliftlem9  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( Q `  M
) `  ( ( M  -  1 )  /  N ) )  =  ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) ) )
Distinct variable groups:    v, b,
z, B    j, b,
k, m, s, u, x, F, v, z   
z, L    M, b,
j, k, m, s, u, v, x, z    P, b, k, m, u, v, x, z    C, b, j, k, s, u, v, z    ph, j,
s, x, z    N, b, k, m, u, v, x, z    S, b, j, k, s, u, v, x, z    j, X    G, b, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, j, k, m, s)    C( x, m)    P( j, s)    Q( j, s)    S( m)    J( m)    L( x, v, u, j, k, m, s, b)    N( j, s)    X( x, z, v, u, k, m, s, b)

Proof of Theorem cvmliftlem9
StepHypRef Expression
1 elfznn 11854 . . . 4  |-  ( M  e.  ( 1 ... N )  ->  M  e.  NN )
2 cvmliftlem.1 . . . . 5  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
3 cvmliftlem.b . . . . 5  |-  B  = 
U. C
4 cvmliftlem.x . . . . 5  |-  X  = 
U. J
5 cvmliftlem.f . . . . 5  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
6 cvmliftlem.g . . . . 5  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
7 cvmliftlem.p . . . . 5  |-  ( ph  ->  P  e.  B )
8 cvmliftlem.e . . . . 5  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
9 cvmliftlem.n . . . . 5  |-  ( ph  ->  N  e.  NN )
10 cvmliftlem.t . . . . 5  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
11 cvmliftlem.a . . . . 5  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
12 cvmliftlem.l . . . . 5  |-  L  =  ( topGen `  ran  (,) )
13 cvmliftlem.q . . . . 5  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
14 eqid 2471 . . . . 5  |-  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem5 30084 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( Q `
 M )  =  ( z  e.  ( ( ( M  - 
1 )  /  N
) [,] ( M  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) )
161, 15sylan2 482 . . 3  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( Q `  M )  =  ( z  e.  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) )
17 simpr 468 . . . . 5  |-  ( ( ( ph  /\  M  e.  ( 1 ... N
) )  /\  z  =  ( ( M  -  1 )  /  N ) )  -> 
z  =  ( ( M  -  1 )  /  N ) )
1817fveq2d 5883 . . . 4  |-  ( ( ( ph  /\  M  e.  ( 1 ... N
) )  /\  z  =  ( ( M  -  1 )  /  N ) )  -> 
( G `  z
)  =  ( G `
 ( ( M  -  1 )  /  N ) ) )
1918fveq2d 5883 . . 3  |-  ( ( ( ph  /\  M  e.  ( 1 ... N
) )  /\  z  =  ( ( M  -  1 )  /  N ) )  -> 
( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) )  =  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  ( ( M  -  1 )  /  N ) ) ) )
201adantl 473 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  M  e.  NN )
2120nnred 10646 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  M  e.  RR )
22 peano2rem 9961 . . . . . . 7  |-  ( M  e.  RR  ->  ( M  -  1 )  e.  RR )
2321, 22syl 17 . . . . . 6  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( M  -  1 )  e.  RR )
249adantr 472 . . . . . 6  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  N  e.  NN )
2523, 24nndivred 10680 . . . . 5  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( M  -  1 )  /  N )  e.  RR )
2625rexrd 9708 . . . 4  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( M  -  1 )  /  N )  e.  RR* )
2721, 24nndivred 10680 . . . . 5  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( M  /  N )  e.  RR )
2827rexrd 9708 . . . 4  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( M  /  N )  e. 
RR* )
2921ltm1d 10561 . . . . . 6  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( M  -  1 )  <  M )
3024nnred 10646 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  N  e.  RR )
3124nngt0d 10675 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  0  <  N )
32 ltdiv1 10491 . . . . . . 7  |-  ( ( ( M  -  1 )  e.  RR  /\  M  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( M  - 
1 )  <  M  <->  ( ( M  -  1 )  /  N )  <  ( M  /  N ) ) )
3323, 21, 30, 31, 32syl112anc 1296 . . . . . 6  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( M  -  1 )  <  M  <->  ( ( M  -  1 )  /  N )  < 
( M  /  N
) ) )
3429, 33mpbid 215 . . . . 5  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( M  -  1 )  /  N )  <  ( M  /  N ) )
3525, 27, 34ltled 9800 . . . 4  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( M  -  1 )  /  N )  <_  ( M  /  N ) )
36 lbicc2 11774 . . . 4  |-  ( ( ( ( M  - 
1 )  /  N
)  e.  RR*  /\  ( M  /  N )  e. 
RR*  /\  ( ( M  -  1 )  /  N )  <_ 
( M  /  N
) )  ->  (
( M  -  1 )  /  N )  e.  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N
) ) )
3726, 28, 35, 36syl3anc 1292 . . 3  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( M  -  1 )  /  N )  e.  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N
) ) )
38 fvex 5889 . . . 4  |-  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `  ( ( M  -  1 )  /  N ) ) )  e.  _V
3938a1i 11 . . 3  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 ( ( M  -  1 )  /  N ) ) )  e.  _V )
4016, 19, 37, 39fvmptd 5969 . 2  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( Q `  M
) `  ( ( M  -  1 )  /  N ) )  =  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  ( ( M  -  1 )  /  N ) ) ) )
415adantr 472 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  F  e.  ( C CovMap  J ) )
42 simpr 468 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  M  e.  ( 1 ... N
) )
432, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42cvmliftlem1 30080 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( 2nd `  ( T `  M ) )  e.  ( S `  ( 1st `  ( T `  M ) ) ) )
442, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem7 30086 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  - 
1 )  /  N
) ) } ) )
45 cvmcn 30057 . . . . . . . . . . 11  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
463, 4cnf 20339 . . . . . . . . . . 11  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> X )
4741, 45, 463syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  F : B --> X )
48 ffn 5739 . . . . . . . . . 10  |-  ( F : B --> X  ->  F  Fn  B )
49 fniniseg 6018 . . . . . . . . . 10  |-  ( F  Fn  B  ->  (
( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  -  1 )  /  N ) ) } )  <->  ( (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  B  /\  ( F `  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) ) )  =  ( G `  ( ( M  - 
1 )  /  N
) ) ) ) )
5047, 48, 493syl 18 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  -  1 )  /  N ) ) } )  <->  ( (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  B  /\  ( F `  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) ) )  =  ( G `  ( ( M  - 
1 )  /  N
) ) ) ) )
5144, 50mpbid 215 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  B  /\  ( F `  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) ) )  =  ( G `  ( ( M  - 
1 )  /  N
) ) ) )
5251simpld 466 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  B )
5351simprd 470 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( F `  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) ) )  =  ( G `  ( ( M  - 
1 )  /  N
) ) )
542, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 37cvmliftlem3 30082 . . . . . . . 8  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( G `  ( ( M  -  1 )  /  N ) )  e.  ( 1st `  ( T `  M )
) )
5553, 54eqeltrd 2549 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( F `  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) ) )  e.  ( 1st `  ( T `  M )
) )
56 eqid 2471 . . . . . . . 8  |-  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b )  =  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b )
572, 3, 56cvmsiota 30072 . . . . . . 7  |-  ( ( F  e.  ( C CovMap  J )  /\  (
( 2nd `  ( T `  M )
)  e.  ( S `
 ( 1st `  ( T `  M )
) )  /\  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  B  /\  ( F `  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) ) )  e.  ( 1st `  ( T `  M )
) ) )  -> 
( ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b )  e.  ( 2nd `  ( T `  M
) )  /\  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) ) )
5841, 43, 52, 55, 57syl13anc 1294 . . . . . 6  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b )  e.  ( 2nd `  ( T `  M )
)  /\  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) )
5958simprd 470 . . . . 5  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) )
60 fvres 5893 . . . . 5  |-  ( ( ( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b )  ->  ( ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) ) `  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) ) )  =  ( F `
 ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) ) ) )
6159, 60syl 17 . . . 4  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b ) ) `  ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) ) )  =  ( F `  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) ) ) )
6261, 53eqtrd 2505 . . 3  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b ) ) `  ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) ) )  =  ( G `  ( ( M  -  1 )  /  N ) ) )
6358simpld 466 . . . . 5  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b )  e.  ( 2nd `  ( T `
 M ) ) )
642cvmsf1o 30067 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  ( 2nd `  ( T `  M ) )  e.  ( S `  ( 1st `  ( T `  M ) ) )  /\  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b )  e.  ( 2nd `  ( T `  M
) ) )  -> 
( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b ) ) : ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) -1-1-onto-> ( 1st `  ( T `
 M ) ) )
6541, 43, 63, 64syl3anc 1292 . . . 4  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) ) : (
iota_ b  e.  ( 2nd `  ( T `  M ) ) ( ( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  b ) -1-1-onto-> ( 1st `  ( T `  M
) ) )
66 f1ocnvfv 6195 . . . 4  |-  ( ( ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b ) ) : ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) -1-1-onto-> ( 1st `  ( T `
 M ) )  /\  ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  (
iota_ b  e.  ( 2nd `  ( T `  M ) ) ( ( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  b ) )  ->  ( ( ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) ) `  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) ) )  =  ( G `
 ( ( M  -  1 )  /  N ) )  -> 
( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 ( ( M  -  1 )  /  N ) ) )  =  ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) ) ) )
6765, 59, 66syl2anc 673 . . 3  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) ) )  =  ( G `  ( ( M  - 
1 )  /  N
) )  ->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 ( ( M  -  1 )  /  N ) ) )  =  ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) ) ) )
6862, 67mpd 15 . 2  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 ( ( M  -  1 )  /  N ) ) )  =  ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) ) )
6940, 68eqtrd 2505 1  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( Q `  M
) `  ( ( M  -  1 )  /  N ) )  =  ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   {crab 2760   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   <.cop 3965   U.cuni 4190   U_ciun 4269   class class class wbr 4395    |-> cmpt 4454    _I cid 4749    X. cxp 4837   `'ccnv 4838   ran crn 4840    |` cres 4841   "cima 4842    Fn wfn 5584   -->wf 5585   -1-1-onto->wf1o 5588   ` cfv 5589   iota_crio 6269  (class class class)co 6308    |-> cmpt2 6310   1stc1st 6810   2ndc2nd 6811   RRcr 9556   0cc0 9557   1c1 9558   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   (,)cioo 11660   [,]cicc 11663   ...cfz 11810    seqcseq 12251   ↾t crest 15397   topGenctg 15414    Cn ccn 20317   Homeochmeo 20845   IIcii 21985   CovMap ccvm 30050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fi 7943  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-icc 11667  df-fz 11811  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-rest 15399  df-topgen 15420  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-top 19998  df-bases 19999  df-topon 20000  df-cn 20320  df-hmeo 20847  df-ii 21987  df-cvm 30051
This theorem is referenced by:  cvmliftlem10  30089  cvmliftlem13  30091
  Copyright terms: Public domain W3C validator