Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem5 Structured version   Unicode version

Theorem cvmliftlem5 27200
Description: Lemma for cvmlift 27210. Definition of  Q at a successor. This is a function defined on  W as  `' ( T  |`  I )  o.  G where  I is the unique covering set of  2nd `  ( T `  M ) that contains  Q ( M  -  1 ) evaluated at the last defined point, namely  ( M  - 
1 )  /  N (note that for  M  =  1 this is using the seed value  Q ( 0 ) ( 0 )  =  P). (Contributed by Mario Carneiro, 15-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
cvmliftlem5.3  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
Assertion
Ref Expression
cvmliftlem5  |-  ( (
ph  /\  M  e.  NN )  ->  ( Q `
 M )  =  ( z  e.  W  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) )
Distinct variable groups:    v, b,
z, B    j, b,
k, m, s, u, x, F, v, z   
z, L    M, b,
j, k, m, s, u, v, x, z    P, b, k, m, u, v, x, z    C, b, j, k, s, u, v, z    ph, j,
s, x, z    N, b, k, m, u, v, x, z    S, b, j, k, s, u, v, x, z    j, X    G, b, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z    k, W, m, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, j, k, m, s)    C( x, m)    P( j, s)    Q( j, s)    S( m)    J( m)    L( x, v, u, j, k, m, s, b)    N( j, s)    W( v, u, j, s, b)    X( x, z, v, u, k, m, s, b)

Proof of Theorem cvmliftlem5
StepHypRef Expression
1 0z 10678 . . . 4  |-  0  e.  ZZ
2 simpr 461 . . . . 5  |-  ( (
ph  /\  M  e.  NN )  ->  M  e.  NN )
3 nnuz 10917 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
4 1e0p1 10804 . . . . . . 7  |-  1  =  ( 0  +  1 )
54fveq2i 5715 . . . . . 6  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  ( 0  +  1 ) )
63, 5eqtri 2463 . . . . 5  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
72, 6syl6eleq 2533 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  M  e.  ( ZZ>= `  ( 0  +  1 ) ) )
8 seqm1 11844 . . . 4  |-  ( ( 0  e.  ZZ  /\  M  e.  ( ZZ>= `  ( 0  +  1 ) ) )  -> 
(  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 M )  =  ( (  seq 0
( ( x  e. 
_V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 ( M  - 
1 ) ) ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) `  M ) ) )
91, 7, 8sylancr 663 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  (  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 M )  =  ( (  seq 0
( ( x  e. 
_V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 ( M  - 
1 ) ) ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) `  M ) ) )
10 cvmliftlem.q . . . 4  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
1110fveq1i 5713 . . 3  |-  ( Q `
 M )  =  (  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  - 
1 )  /  N
) [,] ( m  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 M )
1210fveq1i 5713 . . . 4  |-  ( Q `
 ( M  - 
1 ) )  =  (  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  - 
1 )  /  N
) [,] ( m  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 ( M  - 
1 ) )
1312oveq1i 6122 . . 3  |-  ( ( Q `  ( M  -  1 ) ) ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  - 
1 )  /  N
) [,] ( m  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) ) ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) `  M ) )  =  ( (  seq 0
( ( x  e. 
_V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 ( M  - 
1 ) ) ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) `  M ) )
149, 11, 133eqtr4g 2500 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  ( Q `
 M )  =  ( ( Q `  ( M  -  1
) ) ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) `  M ) ) )
15 0nnn 10374 . . . . . 6  |-  -.  0  e.  NN
16 disjsn 3957 . . . . . 6  |-  ( ( NN  i^i  { 0 } )  =  (/)  <->  -.  0  e.  NN )
1715, 16mpbir 209 . . . . 5  |-  ( NN 
i^i  { 0 } )  =  (/)
18 fnresi 5549 . . . . . 6  |-  (  _I  |`  NN )  Fn  NN
19 c0ex 9401 . . . . . . 7  |-  0  e.  _V
20 snex 4554 . . . . . . 7  |-  { <. 0 ,  P >. }  e.  _V
2119, 20fnsn 5492 . . . . . 6  |-  { <. 0 ,  { <. 0 ,  P >. } >. }  Fn  { 0 }
22 fvun1 5783 . . . . . 6  |-  ( ( (  _I  |`  NN )  Fn  NN  /\  { <. 0 ,  { <. 0 ,  P >. }
>. }  Fn  { 0 }  /\  ( ( NN  i^i  { 0 } )  =  (/)  /\  M  e.  NN ) )  ->  ( (
(  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) `  M )  =  ( (  _I  |`  NN ) `
 M ) )
2318, 21, 22mp3an12 1304 . . . . 5  |-  ( ( ( NN  i^i  {
0 } )  =  (/)  /\  M  e.  NN )  ->  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
>. } ) `  M
)  =  ( (  _I  |`  NN ) `  M ) )
2417, 2, 23sylancr 663 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) `  M )  =  ( (  _I  |`  NN ) `
 M ) )
25 fvresi 5925 . . . . 5  |-  ( M  e.  NN  ->  (
(  _I  |`  NN ) `
 M )  =  M )
2625adantl 466 . . . 4  |-  ( (
ph  /\  M  e.  NN )  ->  ( (  _I  |`  NN ) `  M )  =  M )
2724, 26eqtrd 2475 . . 3  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) `  M )  =  M )
2827oveq2d 6128 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( Q `  ( M  -  1 ) ) ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  - 
1 )  /  N
) [,] ( m  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) ) ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) `  M ) )  =  ( ( Q `  ( M  -  1
) ) ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) M ) )
29 fvex 5722 . . . 4  |-  ( Q `
 ( M  - 
1 ) )  e. 
_V
3029a1i 11 . . 3  |-  ( ph  ->  ( Q `  ( M  -  1 ) )  e.  _V )
31 simpr 461 . . . . . . . . 9  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  m  =  M )
3231oveq1d 6127 . . . . . . . 8  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( m  -  1 )  =  ( M  -  1 ) )
3332oveq1d 6127 . . . . . . 7  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( ( m  - 
1 )  /  N
)  =  ( ( M  -  1 )  /  N ) )
3431oveq1d 6127 . . . . . . 7  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( m  /  N
)  =  ( M  /  N ) )
3533, 34oveq12d 6130 . . . . . 6  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) ) )
36 cvmliftlem5.3 . . . . . 6  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
3735, 36syl6eqr 2493 . . . . 5  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  =  W )
3831fveq2d 5716 . . . . . . . . . 10  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( T `  m
)  =  ( T `
 M ) )
3938fveq2d 5716 . . . . . . . . 9  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( 2nd `  ( T `  m )
)  =  ( 2nd `  ( T `  M
) ) )
40 simpl 457 . . . . . . . . . . 11  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  x  =  ( Q `
 ( M  - 
1 ) ) )
4140, 33fveq12d 5718 . . . . . . . . . 10  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( x `  (
( m  -  1 )  /  N ) )  =  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) ) )
4241eleq1d 2509 . . . . . . . . 9  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( ( x `  ( ( m  - 
1 )  /  N
) )  e.  b  <-> 
( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) )
4339, 42riotaeqbidv 6076 . . . . . . . 8  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b )  =  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) )
4443reseq2d 5131 . . . . . . 7  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) )  =  ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b ) ) )
4544cnveqd 5036 . . . . . 6  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) )  =  `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) ) )
4645fveq1d 5714 . . . . 5  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) )  =  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) )
4737, 46mpteq12dv 4391 . . . 4  |-  ( ( x  =  ( Q `
 ( M  - 
1 ) )  /\  m  =  M )  ->  ( z  e.  ( ( ( m  - 
1 )  /  N
) [,] ( m  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) )  =  ( z  e.  W  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) )
48 eqid 2443 . . . 4  |-  ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) )  =  ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  - 
1 )  /  N
) [,] ( m  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) )
49 ovex 6137 . . . . . 6  |-  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )  e. 
_V
5036, 49eqeltri 2513 . . . . 5  |-  W  e. 
_V
5150mptex 5969 . . . 4  |-  ( z  e.  W  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) )  e.  _V
5247, 48, 51ovmpt2a 6242 . . 3  |-  ( ( ( Q `  ( M  -  1 ) )  e.  _V  /\  M  e.  NN )  ->  ( ( Q `  ( M  -  1
) ) ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) M )  =  ( z  e.  W  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M
) ) ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) )
5330, 52sylan 471 . 2  |-  ( (
ph  /\  M  e.  NN )  ->  ( ( Q `  ( M  -  1 ) ) ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  - 
1 )  /  N
) [,] ( m  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) ) M )  =  ( z  e.  W  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  M )
) ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) )
5414, 28, 533eqtrd 2479 1  |-  ( (
ph  /\  M  e.  NN )  ->  ( Q `
 M )  =  ( z  e.  W  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 M ) ) ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2736   {crab 2740   _Vcvv 2993    \ cdif 3346    u. cun 3347    i^i cin 3348    C_ wss 3349   (/)c0 3658   ~Pcpw 3881   {csn 3898   <.cop 3904   U.cuni 4112   U_ciun 4192    e. cmpt 4371    _I cid 4652    X. cxp 4859   `'ccnv 4860   ran crn 4862    |` cres 4863   "cima 4864    Fn wfn 5434   -->wf 5435   ` cfv 5439   iota_crio 6072  (class class class)co 6112    e. cmpt2 6114   1stc1st 6596   2ndc2nd 6597   0cc0 9303   1c1 9304    + caddc 9306    - cmin 9616    / cdiv 10014   NNcn 10343   ZZcz 10667   ZZ>=cuz 10882   (,)cioo 11321   [,]cicc 11324   ...cfz 11458    seqcseq 11827   ↾t crest 14380   topGenctg 14397    Cn ccn 18850   Homeochmeo 19348   IIcii 20473   CovMap ccvm 27166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-2nd 6599  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-n0 10601  df-z 10668  df-uz 10883  df-seq 11828
This theorem is referenced by:  cvmliftlem6  27201  cvmliftlem8  27203  cvmliftlem9  27204
  Copyright terms: Public domain W3C validator