Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem4 Structured version   Unicode version

Theorem cvmliftlem4 28373
Description: Lemma for cvmlift 28384. The function  Q will be our lifted path, defined piecewise on each section  [ ( M  -  1 )  /  N ,  M  /  N ] for  M  e.  ( 1 ... N ). For 
M  =  0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping  0 to  P. (Contributed by Mario Carneiro, 15-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
Assertion
Ref Expression
cvmliftlem4  |-  ( Q `
 0 )  =  { <. 0 ,  P >. }
Distinct variable groups:    v, b,
z, B    j, b,
k, m, s, u, x, F, v, z   
z, L    P, b,
k, m, u, v, x, z    C, b, j, k, s, u, v, z    ph, j,
s, x, z    N, b, k, m, u, v, x, z    S, b, j, k, s, u, v, x, z    j, X    G, b, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, j, k, m, s)    C( x, m)    P( j, s)    Q( j, s)    S( m)    J( m)    L( x, v, u, j, k, m, s, b)    N( j, s)    X( x, z, v, u, k, m, s, b)

Proof of Theorem cvmliftlem4
StepHypRef Expression
1 cvmliftlem.q . . . . 5  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
21fveq1i 5865 . . . 4  |-  ( Q `
 0 )  =  (  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  - 
1 )  /  N
) [,] ( m  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 0 )
3 0z 10871 . . . . 5  |-  0  e.  ZZ
4 seq1 12084 . . . . 5  |-  ( 0  e.  ZZ  ->  (  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 0 )  =  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
>. } ) `  0
) )
53, 4ax-mp 5 . . . 4  |-  (  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 0 )  =  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
>. } ) `  0
)
62, 5eqtri 2496 . . 3  |-  ( Q `
 0 )  =  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
>. } ) `  0
)
7 fnresi 5696 . . . 4  |-  (  _I  |`  NN )  Fn  NN
8 c0ex 9586 . . . . 5  |-  0  e.  _V
9 snex 4688 . . . . 5  |-  { <. 0 ,  P >. }  e.  _V
108, 9fnsn 5639 . . . 4  |-  { <. 0 ,  { <. 0 ,  P >. } >. }  Fn  { 0 }
11 0nnn 10563 . . . . . 6  |-  -.  0  e.  NN
12 disjsn 4088 . . . . . 6  |-  ( ( NN  i^i  { 0 } )  =  (/)  <->  -.  0  e.  NN )
1311, 12mpbir 209 . . . . 5  |-  ( NN 
i^i  { 0 } )  =  (/)
148snid 4055 . . . . 5  |-  0  e.  { 0 }
1513, 14pm3.2i 455 . . . 4  |-  ( ( NN  i^i  { 0 } )  =  (/)  /\  0  e.  { 0 } )
16 fvun2 5937 . . . 4  |-  ( ( (  _I  |`  NN )  Fn  NN  /\  { <. 0 ,  { <. 0 ,  P >. }
>. }  Fn  { 0 }  /\  ( ( NN  i^i  { 0 } )  =  (/)  /\  0  e.  { 0 } ) )  -> 
( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
>. } ) `  0
)  =  ( {
<. 0 ,  { <. 0 ,  P >. }
>. } `  0 ) )
177, 10, 15, 16mp3an 1324 . . 3  |-  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ` 
0 )  =  ( { <. 0 ,  { <. 0 ,  P >. }
>. } `  0 )
186, 17eqtri 2496 . 2  |-  ( Q `
 0 )  =  ( { <. 0 ,  { <. 0 ,  P >. } >. } `  0
)
198, 9fvsn 6092 . 2  |-  ( {
<. 0 ,  { <. 0 ,  P >. }
>. } `  0 )  =  { <. 0 ,  P >. }
2018, 19eqtri 2496 1  |-  ( Q `
 0 )  =  { <. 0 ,  P >. }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   <.cop 4033   U.cuni 4245   U_ciun 4325    |-> cmpt 4505    _I cid 4790    X. cxp 4997   `'ccnv 4998   ran crn 5000    |` cres 5001   "cima 5002    Fn wfn 5581   -->wf 5582   ` cfv 5586   iota_crio 6242  (class class class)co 6282    |-> cmpt2 6284   1stc1st 6779   2ndc2nd 6780   0cc0 9488   1c1 9489    - cmin 9801    / cdiv 10202   NNcn 10532   ZZcz 10860   (,)cioo 11525   [,]cicc 11528   ...cfz 11668    seqcseq 12071   ↾t crest 14672   topGenctg 14689    Cn ccn 19491   Homeochmeo 19989   IIcii 21114   CovMap ccvm 28340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-seq 12072
This theorem is referenced by:  cvmliftlem7  28376  cvmliftlem13  28381
  Copyright terms: Public domain W3C validator