Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem3 Structured version   Unicode version

Theorem cvmliftlem3 28400
Description: Lemma for cvmlift 28412. Since  1st `  ( T `  M
) is a neighborhood of  ( G " W ), every element  A  e.  W satisfies  ( G `  A )  e.  ( 1st `  ( T `
 M ) ). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem1.m  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
cvmliftlem3.3  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
cvmliftlem3.m  |-  ( (
ph  /\  ps )  ->  A  e.  W )
Assertion
Ref Expression
cvmliftlem3  |-  ( (
ph  /\  ps )  ->  ( G `  A
)  e.  ( 1st `  ( T `  M
) ) )
Distinct variable groups:    v, B    j, k, s, u, v, F    j, M, k, s, u, v    P, k, u, v    C, j, k, s, u, v    ph, j, s    k, N, u, v    S, j, k, s, u, v   
j, X    j, G, k, s, u, v    T, j, k, s, u, v   
j, J, k, s, u, v    k, W
Allowed substitution hints:    ph( v, u, k)    ps( v, u, j, k, s)    A( v, u, j, k, s)    B( u, j, k, s)    P( j, s)    L( v, u, j, k, s)    N( j, s)    W( v, u, j, s)    X( v, u, k, s)

Proof of Theorem cvmliftlem3
StepHypRef Expression
1 cvmliftlem1.m . . 3  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
2 cvmliftlem.a . . . 4  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
32adantr 465 . . 3  |-  ( (
ph  /\  ps )  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
4 oveq1 6291 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  -  1 )  =  ( M  - 
1 ) )
54oveq1d 6299 . . . . . . . 8  |-  ( k  =  M  ->  (
( k  -  1 )  /  N )  =  ( ( M  -  1 )  /  N ) )
6 oveq1 6291 . . . . . . . 8  |-  ( k  =  M  ->  (
k  /  N )  =  ( M  /  N ) )
75, 6oveq12d 6302 . . . . . . 7  |-  ( k  =  M  ->  (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) )  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N
) ) )
8 cvmliftlem3.3 . . . . . . 7  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
97, 8syl6eqr 2526 . . . . . 6  |-  ( k  =  M  ->  (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) )  =  W )
109imaeq2d 5337 . . . . 5  |-  ( k  =  M  ->  ( G " ( ( ( k  -  1 )  /  N ) [,] ( k  /  N
) ) )  =  ( G " W
) )
11 fveq2 5866 . . . . . 6  |-  ( k  =  M  ->  ( T `  k )  =  ( T `  M ) )
1211fveq2d 5870 . . . . 5  |-  ( k  =  M  ->  ( 1st `  ( T `  k ) )  =  ( 1st `  ( T `  M )
) )
1310, 12sseq12d 3533 . . . 4  |-  ( k  =  M  ->  (
( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) )  <->  ( G " W )  C_  ( 1st `  ( T `  M ) ) ) )
1413rspcv 3210 . . 3  |-  ( M  e.  ( 1 ... N )  ->  ( A. k  e.  (
1 ... N ) ( G " ( ( ( k  -  1 )  /  N ) [,] ( k  /  N ) ) ) 
C_  ( 1st `  ( T `  k )
)  ->  ( G " W )  C_  ( 1st `  ( T `  M ) ) ) )
151, 3, 14sylc 60 . 2  |-  ( (
ph  /\  ps )  ->  ( G " W
)  C_  ( 1st `  ( T `  M
) ) )
16 cvmliftlem3.m . . 3  |-  ( (
ph  /\  ps )  ->  A  e.  W )
17 cvmliftlem.g . . . . . . 7  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
18 iiuni 21148 . . . . . . . 8  |-  ( 0 [,] 1 )  = 
U. II
19 cvmliftlem.x . . . . . . . 8  |-  X  = 
U. J
2018, 19cnf 19541 . . . . . . 7  |-  ( G  e.  ( II  Cn  J )  ->  G : ( 0 [,] 1 ) --> X )
2117, 20syl 16 . . . . . 6  |-  ( ph  ->  G : ( 0 [,] 1 ) --> X )
2221adantr 465 . . . . 5  |-  ( (
ph  /\  ps )  ->  G : ( 0 [,] 1 ) --> X )
23 ffun 5733 . . . . 5  |-  ( G : ( 0 [,] 1 ) --> X  ->  Fun  G )
2422, 23syl 16 . . . 4  |-  ( (
ph  /\  ps )  ->  Fun  G )
25 cvmliftlem.1 . . . . . 6  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
26 cvmliftlem.b . . . . . 6  |-  B  = 
U. C
27 cvmliftlem.f . . . . . 6  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
28 cvmliftlem.p . . . . . 6  |-  ( ph  ->  P  e.  B )
29 cvmliftlem.e . . . . . 6  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
30 cvmliftlem.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
31 cvmliftlem.t . . . . . 6  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
32 cvmliftlem.l . . . . . 6  |-  L  =  ( topGen `  ran  (,) )
3325, 26, 19, 27, 17, 28, 29, 30, 31, 2, 32, 1, 8cvmliftlem2 28399 . . . . 5  |-  ( (
ph  /\  ps )  ->  W  C_  ( 0 [,] 1 ) )
34 fdm 5735 . . . . . 6  |-  ( G : ( 0 [,] 1 ) --> X  ->  dom  G  =  ( 0 [,] 1 ) )
3522, 34syl 16 . . . . 5  |-  ( (
ph  /\  ps )  ->  dom  G  =  ( 0 [,] 1 ) )
3633, 35sseqtr4d 3541 . . . 4  |-  ( (
ph  /\  ps )  ->  W  C_  dom  G )
37 funfvima2 6136 . . . 4  |-  ( ( Fun  G  /\  W  C_ 
dom  G )  -> 
( A  e.  W  ->  ( G `  A
)  e.  ( G
" W ) ) )
3824, 36, 37syl2anc 661 . . 3  |-  ( (
ph  /\  ps )  ->  ( A  e.  W  ->  ( G `  A
)  e.  ( G
" W ) ) )
3916, 38mpd 15 . 2  |-  ( (
ph  /\  ps )  ->  ( G `  A
)  e.  ( G
" W ) )
4015, 39sseldd 3505 1  |-  ( (
ph  /\  ps )  ->  ( G `  A
)  e.  ( 1st `  ( T `  M
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818    \ cdif 3473    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   U.cuni 4245   U_ciun 4325    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002   Fun wfun 5582   -->wf 5584   ` cfv 5588  (class class class)co 6284   1stc1st 6782   0cc0 9492   1c1 9493    - cmin 9805    / cdiv 10206   NNcn 10536   (,)cioo 11529   [,]cicc 11532   ...cfz 11672   ↾t crest 14676   topGenctg 14693    Cn ccn 19519   Homeochmeo 20017   IIcii 21142   CovMap ccvm 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-icc 11536  df-fz 11673  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-topgen 14699  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-top 19194  df-bases 19196  df-topon 19197  df-cn 19522  df-ii 21144
This theorem is referenced by:  cvmliftlem6  28403  cvmliftlem8  28405  cvmliftlem9  28406
  Copyright terms: Public domain W3C validator