Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem2 Structured version   Unicode version

Theorem cvmliftlem2 28547
Description: Lemma for cvmlift 28560. 
W  =  [ ( k  -  1 )  /  N ,  k  /  N ] is a subset of  [ 0 ,  1 ] for each  M  e.  ( 1 ... N
). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem1.m  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
cvmliftlem3.3  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
Assertion
Ref Expression
cvmliftlem2  |-  ( (
ph  /\  ps )  ->  W  C_  ( 0 [,] 1 ) )
Distinct variable groups:    v, B    j, k, s, u, v, F    j, M, k, s, u, v    P, k, u, v    C, j, k, s, u, v    ph, j, s    k, N, u, v    S, j, k, s, u, v   
j, X    j, G, k, s, u, v    T, j, k, s, u, v   
j, J, k, s, u, v    k, W
Allowed substitution hints:    ph( v, u, k)    ps( v, u, j, k, s)    B( u, j, k, s)    P( j, s)    L( v, u, j, k, s)    N( j, s)    W( v, u, j, s)    X( v, u, k, s)

Proof of Theorem cvmliftlem2
StepHypRef Expression
1 cvmliftlem3.3 . 2  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
2 0re 9608 . . . 4  |-  0  e.  RR
32a1i 11 . . 3  |-  ( (
ph  /\  ps )  ->  0  e.  RR )
4 1re 9607 . . . 4  |-  1  e.  RR
54a1i 11 . . 3  |-  ( (
ph  /\  ps )  ->  1  e.  RR )
6 cvmliftlem1.m . . . . . . 7  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
7 elfznn 11726 . . . . . . 7  |-  ( M  e.  ( 1 ... N )  ->  M  e.  NN )
86, 7syl 16 . . . . . 6  |-  ( (
ph  /\  ps )  ->  M  e.  NN )
98nnred 10563 . . . . 5  |-  ( (
ph  /\  ps )  ->  M  e.  RR )
10 peano2rem 9898 . . . . 5  |-  ( M  e.  RR  ->  ( M  -  1 )  e.  RR )
119, 10syl 16 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  -  1 )  e.  RR )
12 nnm1nn0 10849 . . . . . 6  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
138, 12syl 16 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( M  -  1 )  e.  NN0 )
1413nn0ge0d 10867 . . . 4  |-  ( (
ph  /\  ps )  ->  0  <_  ( M  -  1 ) )
15 cvmliftlem.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
1615adantr 465 . . . . 5  |-  ( (
ph  /\  ps )  ->  N  e.  NN )
1716nnred 10563 . . . 4  |-  ( (
ph  /\  ps )  ->  N  e.  RR )
1816nngt0d 10591 . . . 4  |-  ( (
ph  /\  ps )  ->  0  <  N )
19 divge0 10423 . . . 4  |-  ( ( ( ( M  - 
1 )  e.  RR  /\  0  <_  ( M  -  1 ) )  /\  ( N  e.  RR  /\  0  < 
N ) )  -> 
0  <_  ( ( M  -  1 )  /  N ) )
2011, 14, 17, 18, 19syl22anc 1229 . . 3  |-  ( (
ph  /\  ps )  ->  0  <_  ( ( M  -  1 )  /  N ) )
21 elfzle2 11702 . . . . . 6  |-  ( M  e.  ( 1 ... N )  ->  M  <_  N )
226, 21syl 16 . . . . 5  |-  ( (
ph  /\  ps )  ->  M  <_  N )
2316nncnd 10564 . . . . . 6  |-  ( (
ph  /\  ps )  ->  N  e.  CC )
2423mulid1d 9625 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( N  x.  1 )  =  N )
2522, 24breqtrrd 4479 . . . 4  |-  ( (
ph  /\  ps )  ->  M  <_  ( N  x.  1 ) )
26 ledivmul 10430 . . . . 5  |-  ( ( M  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( M  /  N )  <_  1  <->  M  <_  ( N  x.  1 ) ) )
279, 5, 17, 18, 26syl112anc 1232 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( M  /  N )  <_  1  <->  M  <_  ( N  x.  1 ) ) )
2825, 27mpbird 232 . . 3  |-  ( (
ph  /\  ps )  ->  ( M  /  N
)  <_  1 )
29 iccss 11604 . . 3  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( 0  <_ 
( ( M  - 
1 )  /  N
)  /\  ( M  /  N )  <_  1
) )  ->  (
( ( M  - 
1 )  /  N
) [,] ( M  /  N ) ) 
C_  ( 0 [,] 1 ) )
303, 5, 20, 28, 29syl22anc 1229 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) ) 
C_  ( 0 [,] 1 ) )
311, 30syl5eqss 3553 1  |-  ( (
ph  /\  ps )  ->  W  C_  ( 0 [,] 1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   {crab 2821    \ cdif 3478    i^i cin 3480    C_ wss 3481   (/)c0 3790   ~Pcpw 4016   {csn 4033   U.cuni 4251   U_ciun 4331   class class class wbr 4453    |-> cmpt 4511    X. cxp 5003   `'ccnv 5004   ran crn 5006    |` cres 5007   "cima 5008   -->wf 5590   ` cfv 5594  (class class class)co 6295   1stc1st 6793   RRcr 9503   0cc0 9504   1c1 9505    x. cmul 9509    < clt 9640    <_ cle 9641    - cmin 9817    / cdiv 10218   NNcn 10548   NN0cn0 10807   (,)cioo 11541   [,]cicc 11544   ...cfz 11684   ↾t crest 14693   topGenctg 14710    Cn ccn 19593   Homeochmeo 20122   IIcii 21247   CovMap ccvm 28516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-icc 11548  df-fz 11685
This theorem is referenced by:  cvmliftlem3  28548  cvmliftlem6  28551  cvmliftlem8  28553
  Copyright terms: Public domain W3C validator