Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem11 Structured version   Unicode version

Theorem cvmliftlem11 28556
Description: Lemma for cvmlift 28560. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
cvmliftlem.k  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
Assertion
Ref Expression
cvmliftlem11  |-  ( ph  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  G ) )
Distinct variable groups:    v, b,
z, B    j, b,
k, m, s, u, x, F, v, z   
z, L    P, b,
k, m, u, v, x, z    C, b, j, k, s, u, v, z    ph, j,
s, x, z    N, b, k, m, u, v, x, z    S, b, j, k, s, u, v, x, z    j, X    G, b, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, j, k, m, s)    C( x, m)    P( j, s)    Q( j, s)    S( m)    J( m)    K( x, z, v, u, j, k, m, s, b)    L( x, v, u, j, k, m, s, b)    N( j, s)    X( x, z, v, u, k, m, s, b)

Proof of Theorem cvmliftlem11
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.1 . . . . 5  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
2 cvmliftlem.b . . . . 5  |-  B  = 
U. C
3 cvmliftlem.x . . . . 5  |-  X  = 
U. J
4 cvmliftlem.f . . . . 5  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
5 cvmliftlem.g . . . . 5  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
6 cvmliftlem.p . . . . 5  |-  ( ph  ->  P  e.  B )
7 cvmliftlem.e . . . . 5  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
8 cvmliftlem.n . . . . 5  |-  ( ph  ->  N  e.  NN )
9 cvmliftlem.t . . . . 5  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
10 cvmliftlem.a . . . . 5  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
11 cvmliftlem.l . . . . 5  |-  L  =  ( topGen `  ran  (,) )
12 cvmliftlem.q . . . . 5  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
13 cvmliftlem.k . . . . 5  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
14 biid 236 . . . . 5  |-  ( ( ( n  e.  NN  /\  ( n  +  1 )  e.  ( 1 ... N ) )  /\  ( U_ k  e.  ( 1 ... n
) ( Q `  k )  e.  ( ( Lt  ( 0 [,] ( n  /  N
) ) )  Cn  C )  /\  ( F  o.  U_ k  e.  ( 1 ... n
) ( Q `  k ) )  =  ( G  |`  (
0 [,] ( n  /  N ) ) ) ) )  <->  ( (
n  e.  NN  /\  ( n  +  1
)  e.  ( 1 ... N ) )  /\  ( U_ k  e.  ( 1 ... n
) ( Q `  k )  e.  ( ( Lt  ( 0 [,] ( n  /  N
) ) )  Cn  C )  /\  ( F  o.  U_ k  e.  ( 1 ... n
) ( Q `  k ) )  =  ( G  |`  (
0 [,] ( n  /  N ) ) ) ) ) )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem10 28555 . . . 4  |-  ( ph  ->  ( K  e.  ( ( Lt  ( 0 [,] ( N  /  N
) ) )  Cn  C )  /\  ( F  o.  K )  =  ( G  |`  ( 0 [,] ( N  /  N ) ) ) ) )
1615simpld 459 . . 3  |-  ( ph  ->  K  e.  ( ( Lt  ( 0 [,] ( N  /  N ) ) )  Cn  C ) )
1711a1i 11 . . . . . 6  |-  ( ph  ->  L  =  ( topGen ` 
ran  (,) ) )
188nncnd 10564 . . . . . . . 8  |-  ( ph  ->  N  e.  CC )
198nnne0d 10592 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
2018, 19dividd 10330 . . . . . . 7  |-  ( ph  ->  ( N  /  N
)  =  1 )
2120oveq2d 6311 . . . . . 6  |-  ( ph  ->  ( 0 [,] ( N  /  N ) )  =  ( 0 [,] 1 ) )
2217, 21oveq12d 6313 . . . . 5  |-  ( ph  ->  ( Lt  ( 0 [,] ( N  /  N
) ) )  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) ) )
23 dfii2 21254 . . . . 5  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
2422, 23syl6eqr 2526 . . . 4  |-  ( ph  ->  ( Lt  ( 0 [,] ( N  /  N
) ) )  =  II )
2524oveq1d 6310 . . 3  |-  ( ph  ->  ( ( Lt  ( 0 [,] ( N  /  N ) ) )  Cn  C )  =  ( II  Cn  C
) )
2616, 25eleqtrd 2557 . 2  |-  ( ph  ->  K  e.  ( II 
Cn  C ) )
2715simprd 463 . . 3  |-  ( ph  ->  ( F  o.  K
)  =  ( G  |`  ( 0 [,] ( N  /  N ) ) ) )
2821reseq2d 5279 . . 3  |-  ( ph  ->  ( G  |`  (
0 [,] ( N  /  N ) ) )  =  ( G  |`  ( 0 [,] 1
) ) )
29 iiuni 21253 . . . . 5  |-  ( 0 [,] 1 )  = 
U. II
3029, 3cnf 19615 . . . 4  |-  ( G  e.  ( II  Cn  J )  ->  G : ( 0 [,] 1 ) --> X )
31 ffn 5737 . . . 4  |-  ( G : ( 0 [,] 1 ) --> X  ->  G  Fn  ( 0 [,] 1 ) )
32 fnresdm 5696 . . . 4  |-  ( G  Fn  ( 0 [,] 1 )  ->  ( G  |`  ( 0 [,] 1 ) )  =  G )
335, 30, 31, 324syl 21 . . 3  |-  ( ph  ->  ( G  |`  (
0 [,] 1 ) )  =  G )
3427, 28, 333eqtrd 2512 . 2  |-  ( ph  ->  ( F  o.  K
)  =  G )
3526, 34jca 532 1  |-  ( ph  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   {crab 2821   _Vcvv 3118    \ cdif 3478    u. cun 3479    i^i cin 3480    C_ wss 3481   (/)c0 3790   ~Pcpw 4016   {csn 4033   <.cop 4039   U.cuni 4251   U_ciun 4331    |-> cmpt 4511    _I cid 4796    X. cxp 5003   `'ccnv 5004   ran crn 5006    |` cres 5007   "cima 5008    o. ccom 5009    Fn wfn 5589   -->wf 5590   ` cfv 5594   iota_crio 6255  (class class class)co 6295    |-> cmpt2 6297   1stc1st 6793   2ndc2nd 6794   0cc0 9504   1c1 9505    + caddc 9507    - cmin 9817    / cdiv 10218   NNcn 10548   (,)cioo 11541   [,]cicc 11544   ...cfz 11684    seqcseq 12087   ↾t crest 14693   topGenctg 14710    Cn ccn 19593   Homeochmeo 20122   IIcii 21247   CovMap ccvm 28516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fi 7883  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-icc 11548  df-fz 11685  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-rest 14695  df-topgen 14716  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-top 19268  df-bases 19270  df-topon 19271  df-cld 19388  df-cn 19596  df-hmeo 20124  df-ii 21249  df-cvm 28517
This theorem is referenced by:  cvmliftlem13  28557  cvmliftlem14  28558
  Copyright terms: Public domain W3C validator