Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem11 Structured version   Unicode version

Theorem cvmliftlem11 27136
Description: Lemma for cvmlift 27140. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
cvmliftlem.k  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
Assertion
Ref Expression
cvmliftlem11  |-  ( ph  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  G ) )
Distinct variable groups:    v, b,
z, B    j, b,
k, m, s, u, x, F, v, z   
z, L    P, b,
k, m, u, v, x, z    C, b, j, k, s, u, v, z    ph, j,
s, x, z    N, b, k, m, u, v, x, z    S, b, j, k, s, u, v, x, z    j, X    G, b, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, j, k, m, s)    C( x, m)    P( j, s)    Q( j, s)    S( m)    J( m)    K( x, z, v, u, j, k, m, s, b)    L( x, v, u, j, k, m, s, b)    N( j, s)    X( x, z, v, u, k, m, s, b)

Proof of Theorem cvmliftlem11
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.1 . . . . 5  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
2 cvmliftlem.b . . . . 5  |-  B  = 
U. C
3 cvmliftlem.x . . . . 5  |-  X  = 
U. J
4 cvmliftlem.f . . . . 5  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
5 cvmliftlem.g . . . . 5  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
6 cvmliftlem.p . . . . 5  |-  ( ph  ->  P  e.  B )
7 cvmliftlem.e . . . . 5  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
8 cvmliftlem.n . . . . 5  |-  ( ph  ->  N  e.  NN )
9 cvmliftlem.t . . . . 5  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
10 cvmliftlem.a . . . . 5  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
11 cvmliftlem.l . . . . 5  |-  L  =  ( topGen `  ran  (,) )
12 cvmliftlem.q . . . . 5  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
13 cvmliftlem.k . . . . 5  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
14 biid 236 . . . . 5  |-  ( ( ( n  e.  NN  /\  ( n  +  1 )  e.  ( 1 ... N ) )  /\  ( U_ k  e.  ( 1 ... n
) ( Q `  k )  e.  ( ( Lt  ( 0 [,] ( n  /  N
) ) )  Cn  C )  /\  ( F  o.  U_ k  e.  ( 1 ... n
) ( Q `  k ) )  =  ( G  |`  (
0 [,] ( n  /  N ) ) ) ) )  <->  ( (
n  e.  NN  /\  ( n  +  1
)  e.  ( 1 ... N ) )  /\  ( U_ k  e.  ( 1 ... n
) ( Q `  k )  e.  ( ( Lt  ( 0 [,] ( n  /  N
) ) )  Cn  C )  /\  ( F  o.  U_ k  e.  ( 1 ... n
) ( Q `  k ) )  =  ( G  |`  (
0 [,] ( n  /  N ) ) ) ) ) )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cvmliftlem10 27135 . . . 4  |-  ( ph  ->  ( K  e.  ( ( Lt  ( 0 [,] ( N  /  N
) ) )  Cn  C )  /\  ( F  o.  K )  =  ( G  |`  ( 0 [,] ( N  /  N ) ) ) ) )
1615simpld 459 . . 3  |-  ( ph  ->  K  e.  ( ( Lt  ( 0 [,] ( N  /  N ) ) )  Cn  C ) )
1711a1i 11 . . . . . 6  |-  ( ph  ->  L  =  ( topGen ` 
ran  (,) ) )
188nncnd 10330 . . . . . . . 8  |-  ( ph  ->  N  e.  CC )
198nnne0d 10358 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
2018, 19dividd 10097 . . . . . . 7  |-  ( ph  ->  ( N  /  N
)  =  1 )
2120oveq2d 6102 . . . . . 6  |-  ( ph  ->  ( 0 [,] ( N  /  N ) )  =  ( 0 [,] 1 ) )
2217, 21oveq12d 6104 . . . . 5  |-  ( ph  ->  ( Lt  ( 0 [,] ( N  /  N
) ) )  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) ) )
23 dfii2 20433 . . . . 5  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
2422, 23syl6eqr 2488 . . . 4  |-  ( ph  ->  ( Lt  ( 0 [,] ( N  /  N
) ) )  =  II )
2524oveq1d 6101 . . 3  |-  ( ph  ->  ( ( Lt  ( 0 [,] ( N  /  N ) ) )  Cn  C )  =  ( II  Cn  C
) )
2616, 25eleqtrd 2514 . 2  |-  ( ph  ->  K  e.  ( II 
Cn  C ) )
2715simprd 463 . . 3  |-  ( ph  ->  ( F  o.  K
)  =  ( G  |`  ( 0 [,] ( N  /  N ) ) ) )
2821reseq2d 5105 . . 3  |-  ( ph  ->  ( G  |`  (
0 [,] ( N  /  N ) ) )  =  ( G  |`  ( 0 [,] 1
) ) )
29 iiuni 20432 . . . . 5  |-  ( 0 [,] 1 )  = 
U. II
3029, 3cnf 18825 . . . 4  |-  ( G  e.  ( II  Cn  J )  ->  G : ( 0 [,] 1 ) --> X )
31 ffn 5554 . . . 4  |-  ( G : ( 0 [,] 1 ) --> X  ->  G  Fn  ( 0 [,] 1 ) )
32 fnresdm 5515 . . . 4  |-  ( G  Fn  ( 0 [,] 1 )  ->  ( G  |`  ( 0 [,] 1 ) )  =  G )
335, 30, 31, 324syl 21 . . 3  |-  ( ph  ->  ( G  |`  (
0 [,] 1 ) )  =  G )
3427, 28, 333eqtrd 2474 . 2  |-  ( ph  ->  ( F  o.  K
)  =  G )
3526, 34jca 532 1  |-  ( ph  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   {crab 2714   _Vcvv 2967    \ cdif 3320    u. cun 3321    i^i cin 3322    C_ wss 3323   (/)c0 3632   ~Pcpw 3855   {csn 3872   <.cop 3878   U.cuni 4086   U_ciun 4166    e. cmpt 4345    _I cid 4626    X. cxp 4833   `'ccnv 4834   ran crn 4836    |` cres 4837   "cima 4838    o. ccom 4839    Fn wfn 5408   -->wf 5409   ` cfv 5413   iota_crio 6046  (class class class)co 6086    e. cmpt2 6088   1stc1st 6570   2ndc2nd 6571   0cc0 9274   1c1 9275    + caddc 9277    - cmin 9587    / cdiv 9985   NNcn 10314   (,)cioo 11292   [,]cicc 11295   ...cfz 11429    seqcseq 11798   ↾t crest 14351   topGenctg 14368    Cn ccn 18803   Homeochmeo 19301   IIcii 20426   CovMap ccvm 27096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-oadd 6916  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fi 7653  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-icc 11299  df-fz 11430  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-rest 14353  df-topgen 14374  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-top 18478  df-bases 18480  df-topon 18481  df-cld 18598  df-cn 18806  df-hmeo 19303  df-ii 20428  df-cvm 27097
This theorem is referenced by:  cvmliftlem13  27137  cvmliftlem14  27138
  Copyright terms: Public domain W3C validator