Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem9 Structured version   Unicode version

Theorem cvmlift3lem9 27219
Description: Lemma for cvmlift2 27208. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
cvmlift3.h  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
cvmlift3lem7.s  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmlift3lem9  |-  ( ph  ->  E. f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
Distinct variable groups:    c, d,
f, k, s, z, g, x    J, c   
g, d, x, J, f, k, s    F, c, d, f, g, k, s    x, z, F    H, c, d, f, g, x, z    S, f, x    B, d, f, g, x, z    G, c, d, f, g, k, x, z    C, c, d, f, g, k, s, x, z    ph, f, x    K, c, f, g, x, z    P, c, d, f, g, x, z    O, c, f, g, x, z    f, Y, g, x, z
Allowed substitution hints:    ph( z, g, k, s, c, d)    B( k, s, c)    P( k, s)    S( z, g, k, s, c, d)    G( s)    H( k, s)    J( z)    K( k, s, d)    O( k, s, d)    Y( k, s, c, d)

Proof of Theorem cvmlift3lem9
StepHypRef Expression
1 cvmlift3.b . . 3  |-  B  = 
U. C
2 cvmlift3.y . . 3  |-  Y  = 
U. K
3 cvmlift3.f . . 3  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmlift3.k . . 3  |-  ( ph  ->  K  e. SCon )
5 cvmlift3.l . . 3  |-  ( ph  ->  K  e. 𝑛Locally PCon )
6 cvmlift3.o . . 3  |-  ( ph  ->  O  e.  Y )
7 cvmlift3.g . . 3  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
8 cvmlift3.p . . 3  |-  ( ph  ->  P  e.  B )
9 cvmlift3.e . . 3  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
10 cvmlift3.h . . 3  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
11 cvmlift3lem7.s . . 3  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )
Homeo ( Jt  k ) ) ) ) } )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem8 27218 . 2  |-  ( ph  ->  H  e.  ( K  Cn  C ) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem5 27215 . 2  |-  ( ph  ->  ( F  o.  H
)  =  G )
14 iitopon 20458 . . . . . 6  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
1514a1i 11 . . . . 5  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
16 scontop 27120 . . . . . . 7  |-  ( K  e. SCon  ->  K  e.  Top )
174, 16syl 16 . . . . . 6  |-  ( ph  ->  K  e.  Top )
182toptopon 18541 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
1917, 18sylib 196 . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
20 cnconst2 18890 . . . . 5  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  K  e.  (TopOn `  Y )  /\  O  e.  Y
)  ->  ( (
0 [,] 1 )  X.  { O }
)  e.  ( II 
Cn  K ) )
2115, 19, 6, 20syl3anc 1218 . . . 4  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  { O } )  e.  ( II  Cn  K ) )
22 0elunit 11406 . . . . 5  |-  0  e.  ( 0 [,] 1
)
23 fvconst2g 5934 . . . . 5  |-  ( ( O  e.  Y  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { O }
) `  0 )  =  O )
246, 22, 23sylancl 662 . . . 4  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ O } ) `
 0 )  =  O )
25 1elunit 11407 . . . . 5  |-  1  e.  ( 0 [,] 1
)
26 fvconst2g 5934 . . . . 5  |-  ( ( O  e.  Y  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { O }
) `  1 )  =  O )
276, 25, 26sylancl 662 . . . 4  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ O } ) `
 1 )  =  O )
289sneqd 3892 . . . . . . . . 9  |-  ( ph  ->  { ( F `  P ) }  =  { ( G `  O ) } )
2928xpeq2d 4867 . . . . . . . 8  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( F `  P
) } )  =  ( ( 0 [,] 1 )  X.  {
( G `  O
) } ) )
30 cvmcn 27154 . . . . . . . . . 10  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
31 eqid 2443 . . . . . . . . . . 11  |-  U. J  =  U. J
321, 31cnf 18853 . . . . . . . . . 10  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
33 ffn 5562 . . . . . . . . . 10  |-  ( F : B --> U. J  ->  F  Fn  B )
343, 30, 32, 334syl 21 . . . . . . . . 9  |-  ( ph  ->  F  Fn  B )
35 fcoconst 5883 . . . . . . . . 9  |-  ( ( F  Fn  B  /\  P  e.  B )  ->  ( F  o.  (
( 0 [,] 1
)  X.  { P } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  P
) } ) )
3634, 8, 35syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { P } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  P
) } ) )
372, 31cnf 18853 . . . . . . . . . . 11  |-  ( G  e.  ( K  Cn  J )  ->  G : Y --> U. J )
387, 37syl 16 . . . . . . . . . 10  |-  ( ph  ->  G : Y --> U. J
)
39 ffn 5562 . . . . . . . . . 10  |-  ( G : Y --> U. J  ->  G  Fn  Y )
4038, 39syl 16 . . . . . . . . 9  |-  ( ph  ->  G  Fn  Y )
41 fcoconst 5883 . . . . . . . . 9  |-  ( ( G  Fn  Y  /\  O  e.  Y )  ->  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  =  ( ( 0 [,] 1 )  X.  {
( G `  O
) } ) )
4240, 6, 41syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  =  ( ( 0 [,] 1 )  X.  {
( G `  O
) } ) )
4329, 36, 423eqtr4d 2485 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { P } ) )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) ) )
44 fvconst2g 5934 . . . . . . . 8  |-  ( ( P  e.  B  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { P }
) `  0 )  =  P )
458, 22, 44sylancl 662 . . . . . . 7  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ P } ) `
 0 )  =  P )
46 cvmtop1 27152 . . . . . . . . . . 11  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
473, 46syl 16 . . . . . . . . . 10  |-  ( ph  ->  C  e.  Top )
481toptopon 18541 . . . . . . . . . 10  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
4947, 48sylib 196 . . . . . . . . 9  |-  ( ph  ->  C  e.  (TopOn `  B ) )
50 cnconst2 18890 . . . . . . . . 9  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  C  e.  (TopOn `  B )  /\  P  e.  B
)  ->  ( (
0 [,] 1 )  X.  { P }
)  e.  ( II 
Cn  C ) )
5115, 49, 8, 50syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  { P } )  e.  ( II  Cn  C ) )
52 cvmtop2 27153 . . . . . . . . . . . . 13  |-  ( F  e.  ( C CovMap  J
)  ->  J  e.  Top )
533, 52syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  Top )
5431toptopon 18541 . . . . . . . . . . . 12  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
5553, 54sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
5638, 6ffvelrnd 5847 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  O
)  e.  U. J
)
57 cnconst2 18890 . . . . . . . . . . 11  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  U. J )  /\  ( G `  O )  e.  U. J )  ->  (
( 0 [,] 1
)  X.  { ( G `  O ) } )  e.  ( II  Cn  J ) )
5815, 55, 56, 57syl3anc 1218 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( G `  O
) } )  e.  ( II  Cn  J
) )
5942, 58eqeltrd 2517 . . . . . . . . 9  |-  ( ph  ->  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  e.  ( II  Cn  J
) )
60 fvconst2g 5934 . . . . . . . . . . 11  |-  ( ( ( G `  O
)  e.  U. J  /\  0  e.  (
0 [,] 1 ) )  ->  ( (
( 0 [,] 1
)  X.  { ( G `  O ) } ) `  0
)  =  ( G `
 O ) )
6156, 22, 60sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ ( G `  O ) } ) `
 0 )  =  ( G `  O
) )
6242fveq1d 5696 . . . . . . . . . 10  |-  ( ph  ->  ( ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) ) ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  {
( G `  O
) } ) ` 
0 ) )
6361, 62, 93eqtr4rd 2486 . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  =  ( ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) ) `  0
) )
641cvmlift 27191 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  e.  ( II  Cn  J
) )  /\  ( P  e.  B  /\  ( F `  P )  =  ( ( G  o.  ( ( 0 [,] 1 )  X. 
{ O } ) ) `  0 ) ) )  ->  E! g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) )  /\  ( g `  0
)  =  P ) )
653, 59, 8, 63, 64syl22anc 1219 . . . . . . . 8  |-  ( ph  ->  E! g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) )
66 coeq2 5001 . . . . . . . . . . 11  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( F  o.  g )  =  ( F  o.  ( ( 0 [,] 1 )  X.  { P }
) ) )
6766eqeq1d 2451 . . . . . . . . . 10  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  <->  ( F  o.  ( ( 0 [,] 1 )  X.  { P } ) )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) ) ) )
68 fveq1 5693 . . . . . . . . . . 11  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( g ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  { P } ) `  0
) )
6968eqeq1d 2451 . . . . . . . . . 10  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( ( g `
 0 )  =  P  <->  ( ( ( 0 [,] 1 )  X.  { P }
) `  0 )  =  P ) )
7067, 69anbi12d 710 . . . . . . . . 9  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) )  /\  ( g `  0
)  =  P )  <-> 
( ( F  o.  ( ( 0 [,] 1 )  X.  { P } ) )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( ( ( 0 [,] 1 )  X. 
{ P } ) `
 0 )  =  P ) ) )
7170riota2 6078 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  { P } )  e.  ( II  Cn  C )  /\  E! g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( g `  0
)  =  P ) )  ->  ( (
( F  o.  (
( 0 [,] 1
)  X.  { P } ) )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( ( ( 0 [,] 1 )  X. 
{ P } ) `
 0 )  =  P )  <->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) )  /\  ( g `  0
)  =  P ) )  =  ( ( 0 [,] 1 )  X.  { P }
) ) )
7251, 65, 71syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( ( F  o.  ( ( 0 [,] 1 )  X. 
{ P } ) )  =  ( G  o.  ( ( 0 [,] 1 )  X. 
{ O } ) )  /\  ( ( ( 0 [,] 1
)  X.  { P } ) `  0
)  =  P )  <-> 
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) )  =  ( ( 0 [,] 1 )  X.  { P } ) ) )
7343, 45, 72mpbi2and 912 . . . . . 6  |-  ( ph  ->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) )  =  ( ( 0 [,] 1 )  X.  { P } ) )
7473fveq1d 5696 . . . . 5  |-  ( ph  ->  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( g `  0
)  =  P ) ) `  1 )  =  ( ( ( 0 [,] 1 )  X.  { P }
) `  1 )
)
75 fvconst2g 5934 . . . . . 6  |-  ( ( P  e.  B  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { P }
) `  1 )  =  P )
768, 25, 75sylancl 662 . . . . 5  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ P } ) `
 1 )  =  P )
7774, 76eqtrd 2475 . . . 4  |-  ( ph  ->  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( g `  0
)  =  P ) ) `  1 )  =  P )
78 fveq1 5693 . . . . . . 7  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( f ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  { O } ) `  0
) )
7978eqeq1d 2451 . . . . . 6  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( f `
 0 )  =  O  <->  ( ( ( 0 [,] 1 )  X.  { O }
) `  0 )  =  O ) )
80 fveq1 5693 . . . . . . 7  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( f ` 
1 )  =  ( ( ( 0 [,] 1 )  X.  { O } ) `  1
) )
8180eqeq1d 2451 . . . . . 6  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( f `
 1 )  =  O  <->  ( ( ( 0 [,] 1 )  X.  { O }
) `  1 )  =  O ) )
82 coeq2 5001 . . . . . . . . . . 11  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( G  o.  f )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) ) )
8382eqeq2d 2454 . . . . . . . . . 10  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( F  o.  g )  =  ( G  o.  f
)  <->  ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) ) ) )
8483anbi1d 704 . . . . . . . . 9  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P )  <->  ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) )  /\  ( g `  0
)  =  P ) ) )
8584riotabidv 6057 . . . . . . . 8  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) ) )
8685fveq1d 5696 . . . . . . 7  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) ) ` 
1 ) )
8786eqeq1d 2451 . . . . . 6  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  P  <->  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  ( ( 0 [,] 1 )  X. 
{ O } ) )  /\  ( g `
 0 )  =  P ) ) ` 
1 )  =  P ) )
8879, 81, 873anbi123d 1289 . . . . 5  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( ( f `  0 )  =  O  /\  (
f `  1 )  =  O  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  P )  <-> 
( ( ( ( 0 [,] 1 )  X.  { O }
) `  0 )  =  O  /\  (
( ( 0 [,] 1 )  X.  { O } ) `  1
)  =  O  /\  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( g `  0
)  =  P ) ) `  1 )  =  P ) ) )
8988rspcev 3076 . . . 4  |-  ( ( ( ( 0 [,] 1 )  X.  { O } )  e.  ( II  Cn  K )  /\  ( ( ( ( 0 [,] 1
)  X.  { O } ) `  0
)  =  O  /\  ( ( ( 0 [,] 1 )  X. 
{ O } ) `
 1 )  =  O  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  P ) )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  O  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  P ) )
9021, 24, 27, 77, 89syl13anc 1220 . . 3  |-  ( ph  ->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  O  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  P ) )
911, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem4 27214 . . . 4  |-  ( (
ph  /\  O  e.  Y )  ->  (
( H `  O
)  =  P  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  O  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  P ) ) )
926, 91mpdan 668 . . 3  |-  ( ph  ->  ( ( H `  O )  =  P  <->  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  O  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  P ) ) )
9390, 92mpbird 232 . 2  |-  ( ph  ->  ( H `  O
)  =  P )
94 coeq2 5001 . . . . 5  |-  ( f  =  H  ->  ( F  o.  f )  =  ( F  o.  H ) )
9594eqeq1d 2451 . . . 4  |-  ( f  =  H  ->  (
( F  o.  f
)  =  G  <->  ( F  o.  H )  =  G ) )
96 fveq1 5693 . . . . 5  |-  ( f  =  H  ->  (
f `  O )  =  ( H `  O ) )
9796eqeq1d 2451 . . . 4  |-  ( f  =  H  ->  (
( f `  O
)  =  P  <->  ( H `  O )  =  P ) )
9895, 97anbi12d 710 . . 3  |-  ( f  =  H  ->  (
( ( F  o.  f )  =  G  /\  ( f `  O )  =  P )  <->  ( ( F  o.  H )  =  G  /\  ( H `
 O )  =  P ) ) )
9998rspcev 3076 . 2  |-  ( ( H  e.  ( K  Cn  C )  /\  ( ( F  o.  H )  =  G  /\  ( H `  O )  =  P ) )  ->  E. f  e.  ( K  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 O )  =  P ) )
10012, 13, 93, 99syl12anc 1216 1  |-  ( ph  ->  E. f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2718   E.wrex 2719   E!wreu 2720   {crab 2722    \ cdif 3328    i^i cin 3330   (/)c0 3640   ~Pcpw 3863   {csn 3880   U.cuni 4094    e. cmpt 4353    X. cxp 4841   `'ccnv 4842    |` cres 4845   "cima 4846    o. ccom 4847    Fn wfn 5416   -->wf 5417   ` cfv 5421   iota_crio 6054  (class class class)co 6094   0cc0 9285   1c1 9286   [,]cicc 11306   ↾t crest 14362   Topctop 18501  TopOnctopon 18502    Cn ccn 18831  𝑛Locally cnlly 19072   Homeochmeo 19329   IIcii 20454  PConcpcon 27111  SConcscon 27112   CovMap ccvm 27147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364  ax-mulf 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-ec 7106  df-map 7219  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-sum 13167  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-starv 14256  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-hom 14265  df-cco 14266  df-rest 14364  df-topn 14365  df-0g 14383  df-gsum 14384  df-topgen 14385  df-pt 14386  df-prds 14389  df-xrs 14443  df-qtop 14448  df-imas 14449  df-xps 14451  df-mre 14527  df-mrc 14528  df-acs 14530  df-mnd 15418  df-submnd 15468  df-mulg 15551  df-cntz 15838  df-cmn 16282  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-cnfld 17822  df-top 18506  df-bases 18508  df-topon 18509  df-topsp 18510  df-cld 18626  df-ntr 18627  df-cls 18628  df-nei 18705  df-cn 18834  df-cnp 18835  df-cmp 18993  df-con 19019  df-lly 19073  df-nlly 19074  df-tx 19138  df-hmeo 19331  df-xms 19898  df-ms 19899  df-tms 19900  df-ii 20456  df-htpy 20545  df-phtpy 20546  df-phtpc 20567  df-pco 20580  df-pcon 27113  df-scon 27114  df-cvm 27148
This theorem is referenced by:  cvmlift3  27220
  Copyright terms: Public domain W3C validator