Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem9 Structured version   Unicode version

Theorem cvmlift3lem9 27064
Description: Lemma for cvmlift2 27053. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
cvmlift3.h  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
cvmlift3lem7.s  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmlift3lem9  |-  ( ph  ->  E. f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
Distinct variable groups:    c, d,
f, k, s, z, g, x    J, c   
g, d, x, J, f, k, s    F, c, d, f, g, k, s    x, z, F    H, c, d, f, g, x, z    S, f, x    B, d, f, g, x, z    G, c, d, f, g, k, x, z    C, c, d, f, g, k, s, x, z    ph, f, x    K, c, f, g, x, z    P, c, d, f, g, x, z    O, c, f, g, x, z    f, Y, g, x, z
Allowed substitution hints:    ph( z, g, k, s, c, d)    B( k, s, c)    P( k, s)    S( z, g, k, s, c, d)    G( s)    H( k, s)    J( z)    K( k, s, d)    O( k, s, d)    Y( k, s, c, d)

Proof of Theorem cvmlift3lem9
StepHypRef Expression
1 cvmlift3.b . . 3  |-  B  = 
U. C
2 cvmlift3.y . . 3  |-  Y  = 
U. K
3 cvmlift3.f . . 3  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmlift3.k . . 3  |-  ( ph  ->  K  e. SCon )
5 cvmlift3.l . . 3  |-  ( ph  ->  K  e. 𝑛Locally PCon )
6 cvmlift3.o . . 3  |-  ( ph  ->  O  e.  Y )
7 cvmlift3.g . . 3  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
8 cvmlift3.p . . 3  |-  ( ph  ->  P  e.  B )
9 cvmlift3.e . . 3  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
10 cvmlift3.h . . 3  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
11 cvmlift3lem7.s . . 3  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )
Homeo ( Jt  k ) ) ) ) } )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem8 27063 . 2  |-  ( ph  ->  H  e.  ( K  Cn  C ) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem5 27060 . 2  |-  ( ph  ->  ( F  o.  H
)  =  G )
14 iitopon 20297 . . . . . 6  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
1514a1i 11 . . . . 5  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
16 scontop 26965 . . . . . . 7  |-  ( K  e. SCon  ->  K  e.  Top )
174, 16syl 16 . . . . . 6  |-  ( ph  ->  K  e.  Top )
182toptopon 18380 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
1917, 18sylib 196 . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
20 cnconst2 18729 . . . . 5  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  K  e.  (TopOn `  Y )  /\  O  e.  Y
)  ->  ( (
0 [,] 1 )  X.  { O }
)  e.  ( II 
Cn  K ) )
2115, 19, 6, 20syl3anc 1211 . . . 4  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  { O } )  e.  ( II  Cn  K ) )
22 0elunit 11390 . . . . 5  |-  0  e.  ( 0 [,] 1
)
23 fvconst2g 5918 . . . . 5  |-  ( ( O  e.  Y  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { O }
) `  0 )  =  O )
246, 22, 23sylancl 655 . . . 4  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ O } ) `
 0 )  =  O )
25 1elunit 11391 . . . . 5  |-  1  e.  ( 0 [,] 1
)
26 fvconst2g 5918 . . . . 5  |-  ( ( O  e.  Y  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { O }
) `  1 )  =  O )
276, 25, 26sylancl 655 . . . 4  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ O } ) `
 1 )  =  O )
289sneqd 3877 . . . . . . . . 9  |-  ( ph  ->  { ( F `  P ) }  =  { ( G `  O ) } )
2928xpeq2d 4851 . . . . . . . 8  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( F `  P
) } )  =  ( ( 0 [,] 1 )  X.  {
( G `  O
) } ) )
30 cvmcn 26999 . . . . . . . . . 10  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
31 eqid 2433 . . . . . . . . . . 11  |-  U. J  =  U. J
321, 31cnf 18692 . . . . . . . . . 10  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
33 ffn 5547 . . . . . . . . . 10  |-  ( F : B --> U. J  ->  F  Fn  B )
343, 30, 32, 334syl 21 . . . . . . . . 9  |-  ( ph  ->  F  Fn  B )
35 fcoconst 5867 . . . . . . . . 9  |-  ( ( F  Fn  B  /\  P  e.  B )  ->  ( F  o.  (
( 0 [,] 1
)  X.  { P } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  P
) } ) )
3634, 8, 35syl2anc 654 . . . . . . . 8  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { P } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  P
) } ) )
372, 31cnf 18692 . . . . . . . . . . 11  |-  ( G  e.  ( K  Cn  J )  ->  G : Y --> U. J )
387, 37syl 16 . . . . . . . . . 10  |-  ( ph  ->  G : Y --> U. J
)
39 ffn 5547 . . . . . . . . . 10  |-  ( G : Y --> U. J  ->  G  Fn  Y )
4038, 39syl 16 . . . . . . . . 9  |-  ( ph  ->  G  Fn  Y )
41 fcoconst 5867 . . . . . . . . 9  |-  ( ( G  Fn  Y  /\  O  e.  Y )  ->  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  =  ( ( 0 [,] 1 )  X.  {
( G `  O
) } ) )
4240, 6, 41syl2anc 654 . . . . . . . 8  |-  ( ph  ->  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  =  ( ( 0 [,] 1 )  X.  {
( G `  O
) } ) )
4329, 36, 423eqtr4d 2475 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { P } ) )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) ) )
44 fvconst2g 5918 . . . . . . . 8  |-  ( ( P  e.  B  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { P }
) `  0 )  =  P )
458, 22, 44sylancl 655 . . . . . . 7  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ P } ) `
 0 )  =  P )
46 cvmtop1 26997 . . . . . . . . . . 11  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
473, 46syl 16 . . . . . . . . . 10  |-  ( ph  ->  C  e.  Top )
481toptopon 18380 . . . . . . . . . 10  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
4947, 48sylib 196 . . . . . . . . 9  |-  ( ph  ->  C  e.  (TopOn `  B ) )
50 cnconst2 18729 . . . . . . . . 9  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  C  e.  (TopOn `  B )  /\  P  e.  B
)  ->  ( (
0 [,] 1 )  X.  { P }
)  e.  ( II 
Cn  C ) )
5115, 49, 8, 50syl3anc 1211 . . . . . . . 8  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  { P } )  e.  ( II  Cn  C ) )
52 cvmtop2 26998 . . . . . . . . . . . . 13  |-  ( F  e.  ( C CovMap  J
)  ->  J  e.  Top )
533, 52syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  Top )
5431toptopon 18380 . . . . . . . . . . . 12  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
5553, 54sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
5638, 6ffvelrnd 5832 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  O
)  e.  U. J
)
57 cnconst2 18729 . . . . . . . . . . 11  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  U. J )  /\  ( G `  O )  e.  U. J )  ->  (
( 0 [,] 1
)  X.  { ( G `  O ) } )  e.  ( II  Cn  J ) )
5815, 55, 56, 57syl3anc 1211 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( G `  O
) } )  e.  ( II  Cn  J
) )
5942, 58eqeltrd 2507 . . . . . . . . 9  |-  ( ph  ->  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  e.  ( II  Cn  J
) )
60 fvconst2g 5918 . . . . . . . . . . 11  |-  ( ( ( G `  O
)  e.  U. J  /\  0  e.  (
0 [,] 1 ) )  ->  ( (
( 0 [,] 1
)  X.  { ( G `  O ) } ) `  0
)  =  ( G `
 O ) )
6156, 22, 60sylancl 655 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ ( G `  O ) } ) `
 0 )  =  ( G `  O
) )
6242fveq1d 5681 . . . . . . . . . 10  |-  ( ph  ->  ( ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) ) ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  {
( G `  O
) } ) ` 
0 ) )
6361, 62, 93eqtr4rd 2476 . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  =  ( ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) ) `  0
) )
641cvmlift 27036 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  e.  ( II  Cn  J
) )  /\  ( P  e.  B  /\  ( F `  P )  =  ( ( G  o.  ( ( 0 [,] 1 )  X. 
{ O } ) ) `  0 ) ) )  ->  E! g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) )  /\  ( g `  0
)  =  P ) )
653, 59, 8, 63, 64syl22anc 1212 . . . . . . . 8  |-  ( ph  ->  E! g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) )
66 coeq2 4985 . . . . . . . . . . 11  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( F  o.  g )  =  ( F  o.  ( ( 0 [,] 1 )  X.  { P }
) ) )
6766eqeq1d 2441 . . . . . . . . . 10  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  <->  ( F  o.  ( ( 0 [,] 1 )  X.  { P } ) )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) ) ) )
68 fveq1 5678 . . . . . . . . . . 11  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( g ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  { P } ) `  0
) )
6968eqeq1d 2441 . . . . . . . . . 10  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( ( g `
 0 )  =  P  <->  ( ( ( 0 [,] 1 )  X.  { P }
) `  0 )  =  P ) )
7067, 69anbi12d 703 . . . . . . . . 9  |-  ( g  =  ( ( 0 [,] 1 )  X. 
{ P } )  ->  ( ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) )  /\  ( g `  0
)  =  P )  <-> 
( ( F  o.  ( ( 0 [,] 1 )  X.  { P } ) )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( ( ( 0 [,] 1 )  X. 
{ P } ) `
 0 )  =  P ) ) )
7170riota2 6063 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  { P } )  e.  ( II  Cn  C )  /\  E! g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( g `  0
)  =  P ) )  ->  ( (
( F  o.  (
( 0 [,] 1
)  X.  { P } ) )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( ( ( 0 [,] 1 )  X. 
{ P } ) `
 0 )  =  P )  <->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) )  /\  ( g `  0
)  =  P ) )  =  ( ( 0 [,] 1 )  X.  { P }
) ) )
7251, 65, 71syl2anc 654 . . . . . . 7  |-  ( ph  ->  ( ( ( F  o.  ( ( 0 [,] 1 )  X. 
{ P } ) )  =  ( G  o.  ( ( 0 [,] 1 )  X. 
{ O } ) )  /\  ( ( ( 0 [,] 1
)  X.  { P } ) `  0
)  =  P )  <-> 
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) )  =  ( ( 0 [,] 1 )  X.  { P } ) ) )
7343, 45, 72mpbi2and 905 . . . . . 6  |-  ( ph  ->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) )  =  ( ( 0 [,] 1 )  X.  { P } ) )
7473fveq1d 5681 . . . . 5  |-  ( ph  ->  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( g `  0
)  =  P ) ) `  1 )  =  ( ( ( 0 [,] 1 )  X.  { P }
) `  1 )
)
75 fvconst2g 5918 . . . . . 6  |-  ( ( P  e.  B  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { P }
) `  1 )  =  P )
768, 25, 75sylancl 655 . . . . 5  |-  ( ph  ->  ( ( ( 0 [,] 1 )  X. 
{ P } ) `
 1 )  =  P )
7774, 76eqtrd 2465 . . . 4  |-  ( ph  ->  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( g `  0
)  =  P ) ) `  1 )  =  P )
78 fveq1 5678 . . . . . . 7  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( f ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  { O } ) `  0
) )
7978eqeq1d 2441 . . . . . 6  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( f `
 0 )  =  O  <->  ( ( ( 0 [,] 1 )  X.  { O }
) `  0 )  =  O ) )
80 fveq1 5678 . . . . . . 7  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( f ` 
1 )  =  ( ( ( 0 [,] 1 )  X.  { O } ) `  1
) )
8180eqeq1d 2441 . . . . . 6  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( f `
 1 )  =  O  <->  ( ( ( 0 [,] 1 )  X.  { O }
) `  1 )  =  O ) )
82 coeq2 4985 . . . . . . . . . . 11  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( G  o.  f )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) ) )
8382eqeq2d 2444 . . . . . . . . . 10  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( F  o.  g )  =  ( G  o.  f
)  <->  ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) ) ) )
8483anbi1d 697 . . . . . . . . 9  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P )  <->  ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O } ) )  /\  ( g `  0
)  =  P ) ) )
8584riotabidv 6041 . . . . . . . 8  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) ) )
8685fveq1d 5681 . . . . . . 7  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) ) ` 
1 ) )
8786eqeq1d 2441 . . . . . 6  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  P  <->  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  ( ( 0 [,] 1 )  X. 
{ O } ) )  /\  ( g `
 0 )  =  P ) ) ` 
1 )  =  P ) )
8879, 81, 873anbi123d 1282 . . . . 5  |-  ( f  =  ( ( 0 [,] 1 )  X. 
{ O } )  ->  ( ( ( f `  0 )  =  O  /\  (
f `  1 )  =  O  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  P )  <-> 
( ( ( ( 0 [,] 1 )  X.  { O }
) `  0 )  =  O  /\  (
( ( 0 [,] 1 )  X.  { O } ) `  1
)  =  O  /\  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  (
( 0 [,] 1
)  X.  { O } ) )  /\  ( g `  0
)  =  P ) ) `  1 )  =  P ) ) )
8988rspcev 3062 . . . 4  |-  ( ( ( ( 0 [,] 1 )  X.  { O } )  e.  ( II  Cn  K )  /\  ( ( ( ( 0 [,] 1
)  X.  { O } ) `  0
)  =  O  /\  ( ( ( 0 [,] 1 )  X. 
{ O } ) `
 1 )  =  O  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  ( ( 0 [,] 1 )  X.  { O }
) )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  P ) )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  O  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  P ) )
9021, 24, 27, 77, 89syl13anc 1213 . . 3  |-  ( ph  ->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  O  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  P ) )
911, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem4 27059 . . . 4  |-  ( (
ph  /\  O  e.  Y )  ->  (
( H `  O
)  =  P  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  O  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  P ) ) )
926, 91mpdan 661 . . 3  |-  ( ph  ->  ( ( H `  O )  =  P  <->  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  O  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  P ) ) )
9390, 92mpbird 232 . 2  |-  ( ph  ->  ( H `  O
)  =  P )
94 coeq2 4985 . . . . 5  |-  ( f  =  H  ->  ( F  o.  f )  =  ( F  o.  H ) )
9594eqeq1d 2441 . . . 4  |-  ( f  =  H  ->  (
( F  o.  f
)  =  G  <->  ( F  o.  H )  =  G ) )
96 fveq1 5678 . . . . 5  |-  ( f  =  H  ->  (
f `  O )  =  ( H `  O ) )
9796eqeq1d 2441 . . . 4  |-  ( f  =  H  ->  (
( f `  O
)  =  P  <->  ( H `  O )  =  P ) )
9895, 97anbi12d 703 . . 3  |-  ( f  =  H  ->  (
( ( F  o.  f )  =  G  /\  ( f `  O )  =  P )  <->  ( ( F  o.  H )  =  G  /\  ( H `
 O )  =  P ) ) )
9998rspcev 3062 . 2  |-  ( ( H  e.  ( K  Cn  C )  /\  ( ( F  o.  H )  =  G  /\  ( H `  O )  =  P ) )  ->  E. f  e.  ( K  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 O )  =  P ) )
10012, 13, 93, 99syl12anc 1209 1  |-  ( ph  ->  E. f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706   E!wreu 2707   {crab 2709    \ cdif 3313    i^i cin 3315   (/)c0 3625   ~Pcpw 3848   {csn 3865   U.cuni 4079    e. cmpt 4338    X. cxp 4825   `'ccnv 4826    |` cres 4829   "cima 4830    o. ccom 4831    Fn wfn 5401   -->wf 5402   ` cfv 5406   iota_crio 6038  (class class class)co 6080   0cc0 9270   1c1 9271   [,]cicc 11291   ↾t crest 14342   Topctop 18340  TopOnctopon 18341    Cn ccn 18670  𝑛Locally cnlly 18911   Homeochmeo 19168   IIcii 20293  PConcpcon 26956  SConcscon 26957   CovMap ccvm 26992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-ec 7091  df-map 7204  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-cn 18673  df-cnp 18674  df-cmp 18832  df-con 18858  df-lly 18912  df-nlly 18913  df-tx 18977  df-hmeo 19170  df-xms 19737  df-ms 19738  df-tms 19739  df-ii 20295  df-htpy 20384  df-phtpy 20385  df-phtpc 20406  df-pco 20419  df-pcon 26958  df-scon 26959  df-cvm 26993
This theorem is referenced by:  cvmlift3  27065
  Copyright terms: Public domain W3C validator