Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem8 Structured version   Unicode version

Theorem cvmlift3lem8 28960
Description: Lemma for cvmlift2 28950. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
cvmlift3.h  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
cvmlift3lem7.s  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmlift3lem8  |-  ( ph  ->  H  e.  ( K  Cn  C ) )
Distinct variable groups:    c, d,
f, k, s, z, g, x    J, c   
g, d, x, J, f, k, s    F, c, d, f, g, k, s    x, z, F    H, c, d, f, g, x, z    S, f, x    B, d, f, g, x, z    G, c, d, f, g, k, x, z    C, c, d, f, g, k, s, x, z    ph, f, x    K, c, f, g, x, z    P, c, d, f, g, x, z    O, c, f, g, x, z    f, Y, g, x, z
Allowed substitution hints:    ph( z, g, k, s, c, d)    B( k, s, c)    P( k, s)    S( z, g, k, s, c, d)    G( s)    H( k, s)    J( z)    K( k, s, d)    O( k, s, d)    Y( k, s, c, d)

Proof of Theorem cvmlift3lem8
Dummy variables  b 
a  v  y  m  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . 3  |-  B  = 
U. C
2 cvmlift3.y . . 3  |-  Y  = 
U. K
3 cvmlift3.f . . 3  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmlift3.k . . 3  |-  ( ph  ->  K  e. SCon )
5 cvmlift3.l . . 3  |-  ( ph  ->  K  e. 𝑛Locally PCon )
6 cvmlift3.o . . 3  |-  ( ph  ->  O  e.  Y )
7 cvmlift3.g . . 3  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
8 cvmlift3.p . . 3  |-  ( ph  ->  P  e.  B )
9 cvmlift3.e . . 3  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
10 cvmlift3.h . . 3  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 28955 . 2  |-  ( ph  ->  H : Y --> B )
123adantr 463 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  F  e.  ( C CovMap  J ) )
13 eqid 2382 . . . . . . . 8  |-  U. J  =  U. J
142, 13cnf 19833 . . . . . . 7  |-  ( G  e.  ( K  Cn  J )  ->  G : Y --> U. J )
157, 14syl 16 . . . . . 6  |-  ( ph  ->  G : Y --> U. J
)
1615ffvelrnda 5933 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( G `  y )  e.  U. J )
17 cvmlift3lem7.s . . . . . 6  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )
Homeo ( Jt  k ) ) ) ) } )
1817, 13cvmcov 28897 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  ( G `  y )  e.  U. J )  ->  E. a  e.  J  ( ( G `  y )  e.  a  /\  ( S `  a )  =/=  (/) ) )
1912, 16, 18syl2anc 659 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  E. a  e.  J  ( ( G `  y )  e.  a  /\  ( S `  a )  =/=  (/) ) )
20 n0 3721 . . . . . . 7  |-  ( ( S `  a )  =/=  (/)  <->  E. t  t  e.  ( S `  a
) )
215ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  K  e. 𝑛Locally PCon )
227ad2antrr 723 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  G  e.  ( K  Cn  J ) )
23 simprr 755 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  t  e.  ( S `  a ) )
2417cvmsrcl 28898 . . . . . . . . . . . . 13  |-  ( t  e.  ( S `  a )  ->  a  e.  J )
2523, 24syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  a  e.  J
)
26 cnima 19852 . . . . . . . . . . . 12  |-  ( ( G  e.  ( K  Cn  J )  /\  a  e.  J )  ->  ( `' G "
a )  e.  K
)
2722, 25, 26syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  ( `' G " a )  e.  K
)
28 simplr 753 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  y  e.  Y
)
29 simprl 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  ( G `  y )  e.  a )
30 ffn 5639 . . . . . . . . . . . . 13  |-  ( G : Y --> U. J  ->  G  Fn  Y )
31 elpreima 5909 . . . . . . . . . . . . 13  |-  ( G  Fn  Y  ->  (
y  e.  ( `' G " a )  <-> 
( y  e.  Y  /\  ( G `  y
)  e.  a ) ) )
3222, 14, 30, 314syl 21 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  ( y  e.  ( `' G "
a )  <->  ( y  e.  Y  /\  ( G `  y )  e.  a ) ) )
3328, 29, 32mpbir2and 920 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  y  e.  ( `' G " a ) )
34 nlly2i 20062 . . . . . . . . . . 11  |-  ( ( K  e. 𝑛Locally PCon  /\  ( `' G " a )  e.  K  /\  y  e.  ( `' G " a ) )  ->  E. m  e.  ~P  ( `' G " a ) E. v  e.  K  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) )
3521, 27, 33, 34syl3anc 1226 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  E. m  e.  ~P  ( `' G " a ) E. v  e.  K  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon )
)
363ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  F  e.  ( C CovMap  J ) )
374ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  K  e. SCon )
385ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  K  e. 𝑛Locally PCon )
396ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  O  e.  Y )
407ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  G  e.  ( K  Cn  J
) )
418ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  P  e.  B )
429ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  ( F `  P )  =  ( G `  O ) )
4329adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  ( G `  y )  e.  a )
4423adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  t  e.  ( S `  a ) )
45 simprll 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  m  e.  ~P ( `' G "
a ) )
4645elpwid 3937 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  m  C_  ( `' G " a ) )
47 eqid 2382 . . . . . . . . . . . . 13  |-  ( iota_ b  e.  t  ( H `
 y )  e.  b )  =  (
iota_ b  e.  t 
( H `  y
)  e.  b )
48 simprr3 1044 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  ( Kt  m
)  e. PCon )
49 simprlr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  v  e.  K )
50 simprr2 1043 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  v  C_  m )
51 simprr1 1042 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  y  e.  v )
521, 2, 36, 37, 38, 39, 40, 41, 42, 10, 17, 43, 44, 46, 47, 48, 49, 50, 51cvmlift3lem7 28959 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  H  e.  ( ( K  CnP  C ) `  y ) )
5352expr 613 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
m  e.  ~P ( `' G " a )  /\  v  e.  K
) )  ->  (
( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon )  ->  H  e.  ( ( K  CnP  C ) `
 y ) ) )
5453rexlimdvva 2881 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  ( E. m  e.  ~P  ( `' G " a ) E. v  e.  K  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon )  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
5535, 54mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  H  e.  ( ( K  CnP  C
) `  y )
)
5655expr 613 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Y )  /\  ( G `  y )  e.  a )  ->  (
t  e.  ( S `
 a )  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
5756exlimdv 1732 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Y )  /\  ( G `  y )  e.  a )  ->  ( E. t  t  e.  ( S `  a )  ->  H  e.  ( ( K  CnP  C
) `  y )
) )
5820, 57syl5bi 217 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Y )  /\  ( G `  y )  e.  a )  ->  (
( S `  a
)  =/=  (/)  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
5958expimpd 601 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  (
( ( G `  y )  e.  a  /\  ( S `  a )  =/=  (/) )  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
6059rexlimdvw 2877 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( E. a  e.  J  ( ( G `  y )  e.  a  /\  ( S `  a )  =/=  (/) )  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
6119, 60mpd 15 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  H  e.  ( ( K  CnP  C ) `  y ) )
6261ralrimiva 2796 . 2  |-  ( ph  ->  A. y  e.  Y  H  e.  ( ( K  CnP  C ) `  y ) )
63 scontop 28862 . . . . 5  |-  ( K  e. SCon  ->  K  e.  Top )
644, 63syl 16 . . . 4  |-  ( ph  ->  K  e.  Top )
652toptopon 19519 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
6664, 65sylib 196 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
67 cvmtop1 28894 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
683, 67syl 16 . . . 4  |-  ( ph  ->  C  e.  Top )
691toptopon 19519 . . . 4  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
7068, 69sylib 196 . . 3  |-  ( ph  ->  C  e.  (TopOn `  B ) )
71 cncnp 19867 . . 3  |-  ( ( K  e.  (TopOn `  Y )  /\  C  e.  (TopOn `  B )
)  ->  ( H  e.  ( K  Cn  C
)  <->  ( H : Y
--> B  /\  A. y  e.  Y  H  e.  ( ( K  CnP  C ) `  y ) ) ) )
7266, 70, 71syl2anc 659 . 2  |-  ( ph  ->  ( H  e.  ( K  Cn  C )  <-> 
( H : Y --> B  /\  A. y  e.  Y  H  e.  ( ( K  CnP  C
) `  y )
) ) )
7311, 62, 72mpbir2and 920 1  |-  ( ph  ->  H  e.  ( K  Cn  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399   E.wex 1620    e. wcel 1826    =/= wne 2577   A.wral 2732   E.wrex 2733   {crab 2736    \ cdif 3386    i^i cin 3388    C_ wss 3389   (/)c0 3711   ~Pcpw 3927   {csn 3944   U.cuni 4163    |-> cmpt 4425   `'ccnv 4912    |` cres 4915   "cima 4916    o. ccom 4917    Fn wfn 5491   -->wf 5492   ` cfv 5496   iota_crio 6157  (class class class)co 6196   0cc0 9403   1c1 9404   ↾t crest 14828   Topctop 19479  TopOnctopon 19480    Cn ccn 19811    CnP ccnp 19812  𝑛Locally cnlly 20051   Homeochmeo 20339   IIcii 21464  PConcpcon 28853  SConcscon 28854   CovMap ccvm 28889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-ec 7231  df-map 7340  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-ioo 11454  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-fl 11828  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-clim 13313  df-sum 13511  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-hom 14726  df-cco 14727  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-pt 14852  df-prds 14855  df-xrs 14909  df-qtop 14914  df-imas 14915  df-xps 14917  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-mulg 16177  df-cntz 16472  df-cmn 16917  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-cnfld 18534  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-cld 19605  df-ntr 19606  df-cls 19607  df-nei 19685  df-cn 19814  df-cnp 19815  df-cmp 19973  df-con 19998  df-lly 20052  df-nlly 20053  df-tx 20148  df-hmeo 20341  df-xms 20908  df-ms 20909  df-tms 20910  df-ii 21466  df-htpy 21555  df-phtpy 21556  df-phtpc 21577  df-pco 21590  df-pcon 28855  df-scon 28856  df-cvm 28890
This theorem is referenced by:  cvmlift3lem9  28961
  Copyright terms: Public domain W3C validator